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𝝉 ≡ first collision time 
Non-colliding condition 
   (for peace-keeping !) 
            τ → ∞ 
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1. Dyson’s Brownian Motion Model 
= Eigenvalue Process of Hermitian Matrix-valued 
   Brownian motion (BM) ← Random Matrix Theory 
= BMs Conditioned Never to Collide with Each Other  
   (Noncolliding BMs) 
= Interacting BMs with Repulsive Log-Potentials (Log-Gase) 

Stochastic Differencial Equations 
        𝑿 𝑡 = 𝑋1 𝑡 ,𝑋2 𝑡 , … ,𝑋𝑁 𝑡  

𝑑𝑋𝑗 𝑡 = 𝑑𝐵𝑗 𝑡 + �
𝑑𝑡

𝑋𝑗 𝑡 − 𝑋𝑘 𝑡
1≤𝑘≤𝑁:𝑘≠𝑗

,  

1 ≤ 𝑗 ≤ 𝑁,　𝑡 ≥ 0 
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2. Fisher’s Vicious Walker Model 
= Random Walks (RWs) Conditioned Never to 
   Collide with Each Other  (Noncolliding RWs) 
= Discrete Version of Dyson’s BM model 
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𝑋𝑗 0 = 𝑣𝑗 ∈ 2𝐙 
𝑋𝑗 𝑡 = 𝑣𝑗 + 𝜁𝑗 1 + ⋯𝜁𝑗 𝑡  
𝜁𝑗 𝑡 ∶  i.i.d.   𝑡 ∈ 𝗡,   1 ≤ 𝑗 ≤ 𝑁 
𝙿 𝜁𝑗 1 = 1 = 𝙿 𝜁𝑗 1 = −1 = 1

2
,  

 
Non-Colliding Condition 
𝑋1 𝑡 < 𝑋2 𝑡 < ⋯ < 𝑋𝑁 𝑡 ,∀𝑡 ∈ 𝗡0 
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Watermelon Configuration 

Star Configuration 



6 

100 paths of noncolliding Brownian bridges with reflection symmetry  



3. Conformal Martingales (CM) 
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• A complex process  𝑍 𝑡 = 𝑉 𝑡 + 𝑖𝑖 𝑡  
    for Dyson’s model: 𝑉 𝑡 ,𝑖 𝑡  : indep. BMs 
     for Fisher’s model: 𝑉 𝑡  : RW, 𝑖 𝑡 : a Lévy process 
• 𝑁 independent copies 𝒁 𝑡 = 𝑍1 𝑡 ,𝑍2 𝑡 , … ,𝑍𝑁 𝑡  
    with distinct initial points 𝑍𝑗 0 = 𝑣𝑗 ∈ 𝐑,  𝒗 = 𝑣𝑗  
• Polynomials (→ entire functions in 𝑁 → ∞ ) 

       𝚽𝒗
𝑣𝑘 𝑍𝑗 𝑡 = ∏ 𝑍𝑗 𝑡 −𝑣ℓ

𝑣𝑘−𝑣ℓ1≤ℓ≤𝑁,ℓ≠𝑘 , 1 ≤ 𝑗,𝑘 ≤ 𝑁 
• Conformal martingales, 0 ≤ ∀𝑡 < ∞ 
    𝚽𝒗

𝑣𝑘 𝑍𝑗 𝑡 = 𝚽𝒗
𝑣𝑘 𝑍𝑗 0 = 𝚽𝒗

𝑣𝑘 𝑣𝑗 = 𝛿𝑗𝑘 



4. CM Representations 
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• Assume 𝑿 0 = 𝒗 ∈ 𝕎𝑁   (Weyl chamber 𝑣1 < 𝑣2 < ⋯ < 𝑣𝑁) 

• 𝐹 𝑿 𝑡 0≤𝑡≤𝑇  : any observable up to time 𝑇 < ∞ 

Theorem 
𝐹 𝑿 𝑡 0≤𝑡≤𝑇  

   = 𝐹 𝚁𝚁 𝒁 𝑡 0≤𝑡≤𝑇 det1≤𝑗,𝑘≤𝑁 𝚽𝒗
𝑣𝑘 𝑍𝑗 𝑇  

 (LHS) = expectation for the present interacting particle systems 
                (Dyson’s and Fisher’s Log-Gases) 
 (RHS) = expectation for independent complex processes 
                with weight det1≤𝑗,𝑘≤𝑁 𝚽𝒗

𝑣𝑘 𝑍𝑗 𝑇  at the final time T 



5. Determinantal Processes 
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From our Conformal Martingale Representations, we can prove the 
following; 
1. The present log-gases are determinantal processes for any finite 

initial configuration.  That is, all spatio-temporal correlation 
functions are given by determinants. 

2. These determinants are specified by a single function called the 
correlation kernel, which is directly determined by the 
conformal martingales 𝚽𝒗

𝑣𝑘 𝒁𝑗 𝑻 , 1 ≤ 𝑗,𝑘 ≤ 𝑁.   
3. The results are extended to (i) the case that the initial config. v has 

multiple points, to (ii) infinite particle systems, and to (iii) other 
systems including noncolliding Bessel processes and O’Connell’s 
processes (geometric liftings of Log-Gases). 

4. A variety of Eynard-Mehta type dynamical correlation kernels 
are readily derived by choosing v appropriately. 
 

 



An example of application of CMR:  
Relaxation Phenomena to Equilibrium Dynamics  
If we start the processes from the infinite equidistant points, a Z, 
we can trace the non-equilibrium dynamics with infinite 
numbers of particles showing relaxation phenomena to 
equilibrium dynamics. The equilibrium dynamics are determinantal 
processes with extended (continuous and discrete) sine kernels. 
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