Stringy growth by Bacterial Species *Bacillus subtilis*

Ryojiro Honda
Chuo University, Katori lab
Oct. 16,2014

What is *Bacillus subtilis*?

• The name of "bacillus subtilis" is derived from Latin, and the mean a narrow stick.

What is bacillus subtilis?

- $0.7-0.8 \times 2-3 \mu m$
- Aerobic
- Heat-resisting property
- Inhabiting a natto

Japanese food "natto"

Characteristics of bacteria

• Groups of some spiecies of bacteria form various colonies depending on both nutrient concentration C_n and agar concentration C_a .

Interesting case

- There are lots of results of experiment of forming colonies as group behavior.
- what will becomes of growth starting at a bacteria? If I can observe it's characteristic growth, I want to make it modeling.

Experiment method

- I inoculated bacillus subtilis on the agar medium and attached it to microscope table keeping about 38 degrees.
- I photographed bacterial growth state with time-lapse mode.

Illustrated in Movie 1

- Approximately, the process occurs in two steps.
- The first step is they are extended stringy without cutting off themselves and increase double line.
- The second step is a center of bacterial groups overlapping each other are expanded in a plane, as thrusting outward.

Simple model

- Step: t = 0,1,2,...
- Bacterial length: I(t) = 2^t
- Growing speed: $v(t) = \{ l(t) l(t-1) \} / 2$ = $(2^{t} - 2^{t-1}) / 2$ = 2^{t-2}
- Thresould value : $v_0 = 4$

Drowing pictures

- The point is two.
- 1 l(t) is incresacing likely exponential function.
- 2v(t) is limited by resistance of agar medium.

Drawing pictures

- l(t=7),l(t=8) pictures
- l(t) is folded up and increase double lines.
- They are extended stringy without cutting off themselves.

Consideration

- Now I have studied the first step.
- I think there are relation between the overall length of bacterial groups and the number of double line for time course.
- The second step is the interface growth and forming colonies, so it needs to other modeling.

Ovservation of double line

Observation of doubleline

