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0. Introduction

Dyson model: well-known one-dimensional stochastic Coulomb gas. First
formulation as eigenvalue process of matrices with independent Brownian
motions (up to symmetry) as entries.

An alternate formulation can be obtained as the symmetrized part of the
Dunkl process of type A.

This formulation depends on the di↵erential-di↵erence Dunkl operators; when
the Dunkl process is not symmetrized, an exchange term remains.

The non-symmetrized Dunkl process can be interpreted as a Dyson model
with exchange interaction.

The present work is the first attempt to give a physical interpretation to the
exchange interaction as a means of information flow.

We construct random graphs using the exchange interaction and consider the
time required for them to become connected.
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1.1 The Dyson model

The Dyson model [Dyson 1962] XXX S(t) of N particles and parameter � is the
multivariate stochastic process given by the SDE

dX S(t) = dB̂
i

(t) +
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2

NX

j=1

j 6=i

dt

X S

i

(t)� X S

j

(t)
. (1)

� can be understood as the square root of the charge or as the inverse
temperature. Equivalently, the Dyson model can be defined by its Fokker-Planck
equation; if its transition density is denoted by p(t,yyy |xxx), the Fokker-Planck
equation is
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p(t,yyy |xxx). (2)

The Dyson model was first formulated [Dyson 1962] as the eigenvalue process of a
Gaussian random matrix with independent Brownian motions as entries, up to
symmetry. In this case � = 1, 2 or 4.
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A sample path of the 4-particle Dyson model with � = 4.5



1.2 Dunkl operators and the exchange interaction

The Dunkl operator [Dunkl 1989] of type A and parameter � > 0 is defined by

T
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ij
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Here, �
ij

permutes the variables x
i

and x
j

. Consider the Markov process obtained
from the generalized heat equation [Rösler-Voit 1998]
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This is the Dunkl process of type A. Explicitly, the Fokker-Planck equation reads
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With p(t,yyy |xxx) = P
⇢2S

N

P(t,yyy |⇢xxx), we recover the Dyson model (� > 0). We see
that the Dunkl process of type A is the Dyson model with exchange interaction.
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Dyson model with exchange interaction (6 particles, beta=8)

A sample path of the 6-particle Dyson model with interaction for � = 8



2.1 The exchange interaction - what we know

Through a gauge transformation and a change to (or from) imaginary time,
the Dyson model with exchange is taken to a Calogero-Moser system of spins
with inverse-squared distance couplings [Hikami-Wadati 1993].
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The spins are su(⌫), so they are generalized spins.

Via the scaling yyy =
p
�tYYY , the transition density converges to the steady

state distribution

(�t)N/2P(t,
p
�tYYY |xxx) t!1�! e��F (YYY )
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The convergence to the steady-state distribution is of order O(t�1/2), and it
is due to the exchange interaction [SA-Miyashita 2015].
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2.2 Exchange number expectation

Theorem

Denote the jump counting process by N (t) and set xxx
0

such that
x
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81  i , j  N, � > 1. Then, for t � x2

0

,

E
x

x

x

[N (t)] = O[log(t)] and
d

dt
E
x

x

x

[N (t)] = O(1/t). (7)

Proof: the jump process is a non-homogeneous Poisson process with rate function
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2.3 The skew-product representation

Suppose that the Dyson model with exchange is driven by BBB(t) and that the

continuous Dyson model XXX S(t) is driven by B̂BB(t), with

B̂BB(t)� B̂BB(T
n

) = ⇢(t)�1[BBB(t)�BBB(T
n

)] (8)

for all exchange times T
n

< t < T
n+1

and all n � 0.

Theorem

Denote by C
A

:= {yyy 2 RN : y
j

� y
i

> 0,8 i < j} the Weyl chamber of W = S
N

. A
Dyson model with exchange interaction XXX (t) with � > 1 can be written as

XXX (t)
law

= ⇢(t)XXX S(t). (9)

⇢(t): continuous-time random walk on S
N

; XXX S(t): Dyson model on C
A

. The
equality holds pathwise when the driving Brownian motions are related by (8).

Proof: whenever an exchange occurs, perform the inverse exchange to bring the
process back to C

A

. Due to the finiteness of E
x

x

x

[N (t)], we can perform a
mathematical induction, and the proof is complete. All the important information
about the exchange interaction lies in the random walk ⇢(t) = ⇢(XXX S(t), t).
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3.1 The exchange interaction and information propagation

We perform numerical simulations at large � to examine the exchange
interaction.

Probing ⇢(XXX S(t), t) 2 S
N

directly is time consuming.

We propose three random-graph construction models with equally-spaced
(⇠ p

�) and centered initial conditions on the Dyson model:
1

“Networking” model (we add an edge between any two particles who make an

exchange).

2

Contagion (we add an edge when a non-infected particle and an infected

particle make an exchange).

Here, we assume that the particles (agents) are more prone to develop links
with particles that are closer, so every particle behaves di↵erently depending
on its position within the (Dyson) configuration.
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3.2 Networking - sample

Sample graph for N = 64, � = 8

With high probability, there is at least one node of strength 1.

Completion time T : time needed to get a connected graph.
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3.2 Networking - completion times

N = 1024 � = 8

The dependence of T on � is weak (
p
� scaling).

At large N, it seems that there is a power-law relationship between T and N.
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3.2 Networking - strength frequencies

N = 128, k = 0.054 N = 256, k = 0.035

N = 512, k = 0.026 N = 1024, k = 0.013

Fixed �, varying N. Fitting function is of the form f = A⇥ 10�ks .

Strength distribution seems non-trivial; k seems to fall with N.
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3.3 Contagion - sample

Sample graph for N = 32, � = 8
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3.3 Contagion - completion times

N = 1024 � = 8

As before, the dependence of T on � is weak.

At large N, it seems that there is a power-law relationship between T and N.

S. Andraus (Chuo U.) Relaxation by exchange interaction JPS Gakkai 2017-09-23 15 / 18



3.3 Contagion - degree frequencies

N = 128, k = 0.275 N = 256, k = 0.263

N = 512, k = 0.247 N = 1024, k = 0.240

Fixed �, varying N. Degree frequencies show an exponential behavior.

Fitting function: f = A⇥ 10�kd ; k decreases only slightly with N.
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4. Summary and outlook

Results:

At large N, it seems that T = A⇥ 10kN .

With an initial condition scaled by
p
�, T has a very weak dependence on �

(if any) when � is large.

The strength distribution shows a complex structure in the networking model.

The degree distribution in the contagion model shows an exponential
behavior (f = A⇥ 10�kd).

Current work:

Analytics.

Exponential behavior in the contagion model: is it due to the rules of the
model, or intrinsic to the exchange interaction?

Improvement of the simulation code to deal with smaller values of � (what
happens when � is close to 1?)

How do these results translate to the behavior of ⇢(XXX S(t), t)?

Formulation of other types of models.
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Thank you!



3. Appendix - Label random walk

Label walk times for � = 8

T : time until the graph is connected (completion time).

Dependence on � is extremely weak (see previous slides).

Dependence on N is non-monotonic. T seems to grow too rapidly to probe
numerically.
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