Three-parametric Marcenko-Pastur Density

Taiki Endo, Chuo University

5.References

[1]Blaizot, J.-P., Nowak, M. A., Warchoł, P.: Universal shocks in the Wishart random-matrix ensemble. Phys. Rev. E **87**, 052134/1–10 (2013) [2] Blaizot, J.-P., Nowak, M. A., Warchoł, P.: Universal shocks in the Wishart random-matrix ensemble. II. Nontrivial initial conditions. Phys. Rev. E **89**, 042130/1–7 (2014) [3]Endo, T., Katori, M.: Three-Parametric Marcenko-Pastur Density. arXiv: math. PR/1907.07413

Consider $M \times N(M \ge N)$ random matrices $K = (K_{ik})$ such that the elements are complex, i.i.d and normally distributed with zero mean and variance 1.This setting is described as

1.Original and two-parametric Marcenko-Pastur density

We denote the eigenvalues of *L* as X_j , $j~=~1,~...,N.$ In the scaling limit*,* $N\to\infty$ *, M* $\to\infty$ with $N/M=r\in(0,1],$ the empirical distribution of $\{X_j/M\}$ converges to a deterministic measure. The limit measure has a finite support in ℝ and it is explicitly given as a function of the parameter r**.**

$$
\Re K_{jk} \sim N(0.1/2), \quad \Im K_{jk} \sim N(0.1/2), \quad j = 1, ..., M, \quad k = 1, ..., N.
$$
 (1.1)

We consider a statistical ensemble of $N \times N$ Hermitian random matrices L defined by

 $L = K^{\dagger} K.$ (1.2)

where $v = M - N$ and $B_j(t)$, $t \ge 0$, $1 \le j \le N$ are independent one-dimensional standard Brownian motions. For $\rho_\xi(x;r,t)$, $t \ge 0$ with initial distribution $\xi,$ we define the Green function (the resolvent) $\,G_\xi(z;r,t)$ by the Stieltjes transform of $\rho_\xi.$ Then we can prove that this solves the following nonlinear partial differential equation (PDE),

$$
\rho(x; r) = \frac{\sqrt{(x - x_L(x; r))(x_R(x; r) - x)}}{2\pi rx} \mathbf{1}_{(x_L(r), x_R(r))}(x), \quad x_L(r) := (1 - \sqrt{r})^2, \quad x_R(r) := (1 + \sqrt{r})^2. \tag{1.3}
$$

A dynamical extension of eigenvalue distribution of Wishart-matrix ensemble is realized by the solution of the following system of stochastic

differential equations(SDEs),

$$
dX_j^N(t) = 2\sqrt{X_j^N(t)dB_j(t) + 2(\nu+1)dt + 4X_j^N(t)\sum_{\substack{1 \le k \le N, \\ k \ne j}} \frac{1}{X_j^N(t) - X_k^N(t)}, \quad j = 1, ..., N, \quad t \ge 0,
$$
 (1.4)

PDE(1.5), with starting from $a \ge 0$, the Green function, is obtained by the solution of equation,[2]

$$
\frac{\partial G_{\xi}}{\partial t} = -\frac{\partial G_{\xi}}{\partial z} + r\{\frac{\partial G_{\xi}}{\partial z} - 2zG_{\xi}\frac{\partial G_{\xi}}{\partial z} - G_{\xi}^2\}, \quad t \ge 0. \quad (1.5)
$$

Under the initial condition that all particles are concentrated on the origin , Green function $G_{\delta_0}(z;r,t)$ is given by the solution of the equation,

Figure1: Histograms of eigenvalues of matrices L given by random rectangular matrices K with size 1000 \times 300. K's elements are randomly generalized following complex normal distribution, with mean 0(right), and $\sqrt{300}\delta_{ii}$ (left). MP density are shown by curves.

$$
z = \frac{1}{G_{\delta_0}(z)} + \frac{t}{1 - rt G_{\delta_0}(z)}, \quad z \in \mathbb{C} \setminus \mathbb{R}, \quad r \in (0, 1], \quad t \ge 0. \quad (1.6)
$$

parametric Marcenko-Pastur Density starting from 1. Left figure : $r = 0.3$, Right figure : $r = 1$.

(2) There is a critical time $t_c(a) = a$ such that time domain touches $x = 0$. More specifically, while $0 \le t \le t_{c(a)},$

 $x_L(r, t, a) \simeq$ 4 $27a^2$ $(t_c(a) - t)^3$, as $t \nearrow t_c(a)$ (3)When , the three-parametric Marcenko-Pastur density shows the following dynamic critical phenomena at $t = t_c(a)$.

The probability density on the time-dependent extension is obtained by solving the equation and using the Sokhotski-Plemelj theorem [1],

$$
\rho(x; r, t) = \frac{\sqrt{(x - x_L(x; r, t))(x_R(x; r, t) - x)}}{2\pi rx} \mathbf{1}_{(x_L(r, t), x_R(r, t))}(x), \quad x_L(r, t) := (1 - \sqrt{r})^2 t, \quad x_R(r, t) := (1 + \sqrt{r})^2 t. \quad (1.7)
$$

$$
f_R(x; r, t, a) = \left(\sqrt{\frac{t - a + \sqrt{-4a\varphi + (t - a)^2}}{2}} + \sqrt{\varphi + x + \frac{t - a + \sqrt{-4a\varphi + (t - a)^2}}{2}}\right),
$$

\nwhere,
\n
$$
\varphi(x; r, t, a) := -\frac{2}{3}\left\{x - (r - 1)t\right\} - \frac{2^{\frac{1}{3}}x^2 + \left\{3a - (2r + 1)t\right\}x + t^2(r - 1)^2}{g^{\frac{1}{3}}} - \frac{g^{\frac{1}{3}}}{3\times2^{\frac{1}{3}}},
$$

\n
$$
g(x; r, t, a) := -2x^3 + 3\left\{(2r + 1)t + 6a\right\}x^2 - 3\left[(r - 1)\left\{(2r + 1)t - 3a\right\}t - \sqrt{-3S}\right)\right]x + 2(r - 1)^3t^3,
$$

\n
$$
S(x; r, t, a) := 4ax^3 - \left\{8a^2 + 4a(3r + 2)t - t^2\right\}x^2 + 2\left[2a^3 - 2a^2(5r - 2)t + a\left\{r(6r - 1) + 1\right\}t^2 - (r + 1)t^3\right]x + (r - 1)^2t^2\left\{a^2 - a(4r - 2)t + t^2\right\}.
$$

\n
$$
x_L(r, t, a), x_R(r, t, a) := x_1, x_2, x_3 \text{ are real solutions of } S(x; r, t, a) = 0, \text{ and}
$$

\n
$$
x_1 \le x_2 \le x_3, \text{Define } x_L(r, t, a) := x_2, x_R(r, t, a) := x_3.
$$

2.Three-parametric Marcenko-Pastur density

$$
z = \frac{1}{G_{\delta_0}(z)} + \frac{t}{1 - rtG_{\delta_0}(z)} + \frac{a}{(1 - rtG_{\delta_0}(z))^2}, \quad z \in \mathbb{C} \setminus \mathbb{R}, \ r \in (0, 1], \ t \ge 0 \ , \ a \ge 0.
$$

We write the probability density via the Sokhotski-Plemelj theorem as ρ_{δ_a} and call it the *three-parametric Marcenko-Pastur density.* ρ_{δ_a} is given by the following explicit formula $\rho(x; r, t, a)$. In Figure1, the original MP density and the three-parametric MP density are

represented by curves. These histograms are generated finite random matrices have correspond parameters.

4.Proposition

(1) If and only if $r = 1$, the domain $\{(x_L(r, t, a), x_R(r, t, a)) : t \ge 0\}$ touches the $x = 0$.

(iii) For
$$
t_c(a) < t
$$
,
\n
$$
\rho(x; 1, t, a) \simeq \frac{1}{\pi t_c(a)} (t - t_c(a))^{1/2} x^{-1/2}
$$
\n
$$
\text{Figure 3:For (3) in } r = 1, a = 1.
$$
\n
$$
\text{The dashed curve : (i) at } t = 0.5t_c(1). \text{ The solid curve : (ii) at the critical time } t = t_c(1). \text{ The dotted curve : (iii) at } t = 1.5t_c(1).
$$

In Figure3, the dashed curve denotes the emergence of ρ at $x = x_L > 0$ with the critical exponent 1/2 at subcritical time. The solid curve $-x^{-1/3}$ is weaker than the dotted curve $x^{-1/2}$.

