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1.0riginal and two-parametric Marcenko-Pastur density
Consider M x N(M = N) random matrices K = (Kj;,) such that the elements are complex, i.i.d and normally distributed with zero mean and variance
1.This setting is described as
RKi,~N(0,1/2), JKy~N(0,1/2), j=1,...M, k=1,..,N. (1L.1)
We consider a statistical ensemble of N X N Hermitian random matrices L defined by
L=K'K. (1.2)
We denote the eigenvaluesof Las X;, j = 1, ...,N.In the scaling limit, N - oo, M - oo with N/M = r € (0,1],the empirical distribution of {X;/M}
converges to a deterministic measure. The limit measure has a finite support in R and it is explicitly given as a function of the parameter r.
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A dynamical extension of eigenvalue distribution of Wishart-matrix ensemble is realized by the solution of the following system of stochastic
differential equations(SDEs),
dX;'(t) = 2\/XN(t)dB () + 2(v + Ddt 4+ 4X" () Y1<ken, . j=1,..,N, t=>0, (1.4)
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where v =M — N and B;(t),t 20,1 <j < N are independent one-dimensional standard Brownian motions. For pg(x;r,t), t = 0 with initial distribution &;
we define the Green function (the resolvent) G:(z;1,t) by the Stieltjes transform of ps. Then we can prove that this solves the following nonlinear
partial differential equation (PDE),
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Under the initial condition that all particles are concentrated on the origin Green function G (z;7,t) is given by the solution of the equation,
z=——4+—L _ 7eC\R, re(,1], t=>0. (1.6)
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The probability density on the time-dependent extension is obtained by solving the equation and using the Sokhotski-Plemelj theorem [1],
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2.Three-parametric Marcenko-Pastur density 4.Proposition
PDE(1.5),with starting from a > 0, the Green function, is obtained by (DIf and only if r = 1 ,the domain {(x(r, t,a), xz(r,t,a)): t = 0} touches
the solution of equation,|2] the x = 0 .
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We write the probability density via the Sokhotski-Plemelj theorem '
as ps. and call it the three-parametric Marcenko-Pastur density. ps_is 1.5 | 1.5}
given by the following explicit formula p(x;r,t,a). In Figurel, the i
original MP density and the three-parametric MP density are t1.0 1t1.0}
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More specifically , while 0 <t <t ),
Figurel:Histograms of eigenvalues of matrices L given by

x;(r,t,a) = : ast 7 t.(a)
random rectangular matrices K with size 1000 x 300. LA T2 2702 | o
K's elements are randomly generalized following complex (3)When , the three-parametric Marcenko-Pastur density shows the

normal distribution, with mean 0(right),and v3005;(left).MP following dynamic critical phenomena at t = t.(a).
density are shown by curves.

(iQ)For 0 <t < t.(a),
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The three-parametric Marcenko-Pastur density p(x;r,t,a) is given by,
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S(x;7,t,a) = 4ax3 — {8a® + 4a(3r + 2)t — t*}x? + 2[2a>® — 2a?*(57 — 2)t + In Figure3,the dashed curve denotes the emergenceofpatx =x;, >0
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is weaker than the dotted curve x~1/2.
x; (r,t,a),xp(r,t,a) :Let xq,x,,x5 are real solutions of S(x;r,t,a) = 0, and
X1 < x,< x3,Define x;(r, t,a) = x,, xp(r, t,a) = xs.
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