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1. Introduction
1.1 Log-gases on R

For N € N:={1,2,...}, consider a system of interacting Brownian motions
on R, X, = (X", ..., Xy e RV ¢ > 0, following the SDEs,

dx!" = /rdB" + FO(X,)dt, i=1,...,N, t>0,

where {B!” : t > 0}, are mutually independent one-dimensional standard

Brownian motions, and x > 0. (Note that /B, fez) B, t>0.)



e Example 1: Dyson model with parameter 5 > 0
Consider the case that

dx = dB +

wlm
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e Example 2: Bru-Wishart process with parameters (53, v)
Consider the case that

N -
.. 1 4 A4+ 0+K/2
FW(X)ZE( n )+ TOHRZ N

Xi — Xy Ti + £ j i

j=1
j#i

A time change of the obtained SDEs (xt — t, X;,,, — X;) gives
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£>0, i=1.... N, with =2 p=-2
K

dx{" =dB{" +
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1.2 Multiple SLE curves on H

e Denote the upper half of complex plane as H= {2z € C: Iz > 0}.

Theorem 1.1 (Theorem 1.1 of [RS17]) Let n¥ : (0,00) — H, i = 1,..., N, be
non-colliding and non-self-intersecting curves in H anchored on R There exists a
unique set of continuous driving functions X; = (X(l). . ,Xt(\)) e RN, t € [0,00),

such that the family of conformal mappings (uniformization maps)

N
g - H = ]H[\ | Jn?0.4 - |
=1

solves the multiple Loewner equation.:

N
dfgt e :; t>0, go(2)=2€H,

e., {gt}e>0 s the Loewner chain driven by {X; : t > 0}. Moreover, the driving
functions are determined by

XY =1limg(n? ) +e¢), i=1,...,N.

e—0

[RS17] D. Roth, S. Schleissinger : The Schramm-Loewner equation for
multiple slits, J. Anal. Math. 131, 73-99 (2017). 6
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e There is a room for changing the model of uniformization maps. As a
generalized multiple Loewner equation for N slits, we consider the following
form

d

ng(fj) T \D(Qt(z)z Xt)_-. t 2 0* 90(:) — <,
where U(z,x) is a suitable functions of z and x = (xy,...,2x), and {X; =
(Xtm., - XfM) :t > 0} is a set of driving processes.

e The above uniformization map (the conformal map to H) is obtained, when

we take

N

2 o

W(z,x):zy_qﬁ', seH, xeRY.
2 — XL
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@ Let O:={z€C:Rz>0, 32> 0} be an orthant in C. We adopt

N
2 2
U(z,x) = Ugp(z,x) := Z ( T ) .7 é, z€0, x¢€ (Rs)?,

—\Z T Z =+ iy g

where § € R is a parameter and R., = {z € R: z > 0}.

e The associated Loewner equation becomes

d - 2 9 5
—gpl#) = == = |} ; 1 =>0,
at™ Z <gt<z> - X" (2) + X} >> 9:(2)

go(z) = 2z € O,

driven by {X; = (Xt(l), ..,Xt(N)) (Rs) : ¢t > 0}.

This is the multiple quadrant SLE which governs the N non—colhdlng and

non-self-intersecting slits {n(" : (0,00) —+ O}Y, anchored on R 77(()) = Xé” >

0,i=1,....N

e The multiple quadrant SLE ¢,(-), t > 0, will give a uniformization map

N
ge: 0} :== 0\ | Jn?(0,] » ©



1.3 GFF on D and Quantum Surface (QS)

D C C : a simply connected domain.
C>=(D) : the space of smooth functions on D that extend to the boundary.

W (D) : the Hilbert space completion of C*°(D) with respect to the Dirichlet

inner product

(19 = 5= [ (VNE)- (Ta)Edn(o)

where (i is the Lebesgue measure on D C C; du(z) = dzdz.

Then the Gaussian free field (GFF) with free boundary condition is defined
as an isotopy
HD : H"’(D) —3 LQ(QD,FD,PD),

where L*(Qp, Fp,Pp) is a probability space such that each Hp(p) := (Hp, p)v,
p € W(D), is a mean-zero Gaussian random variable.

This can also be regarded as a random distribution Hp : Qp — C*(D)’, where
C>*(D)" denotes the space of distributions with test functions in C'*°(D).
(Note that each member of W (D) makes sense only up to additive con-
stants.)

10



e For p € C*(H), we define

(Hum, p) == (Hu, (=A)"p)v.

e Let p;,p, € C*(H) be functions of zero total mass: [, p;(2)du(z) =0, i = 1,2.
Then (Hy, p;), i = 1,2 are mean-zero Gaussian variables with covariance

E[(Hu, p1)(Hu, p2)] = /HQ 1 (2)Gu(z, w)p2(w)dp™ (2, w),

where
Gu(z,w) = —log |z — w| — log |z — w].

11



e For each realization of GFF, h(-) = Hp(-,w), w € Qp, let h.(z) be the mean
value of / on the circle 0B,(z) of radius ¢ centered at 2 € D.

e Introduce a parameter v € (0, 2].

e Then the area measure of the Liouville quantum gravity (LQG) is obtained
by
; s =3 5
du] (z) := lime” 2B du(z), z¢€ D.

e—0

In a similar way, the boundary measure of LQG is given by

dv) (x) := lim €7/ 4rhe)] *dv(z), = €D,

e—0

where v is the Lebesgue measure on the boundary 0D, while, in this case,
h.(x) is the average over the semi-circle centered at x € 0D of radius ¢

included in D.

12



e Let D ¢ C be another simply connected domain,
and v : D — D be a conformal map.

e Then an area measure is induced on D by pulling back the measure (] on
D; v*u)(A) := u)(v(A)) for a measurable set A C D.

e By changing integration variables, 1*/;] becomes

lim/ 6’7"'2/26:""’?“(z)dl.f-(:f) = 11111/(|1, w)|e)” [2gnthov)ew NP dp(w),
(A) A

e—0 il e—0

d)

dw
parameter ¢ has to be rescaled by |¢/(w)]|.

where ¢'(w) = —(w). Note that, in the right hand side, the regularization

e This implies that if we introduce a distribution on D by

: v 2 B
h=hot+ Qlogly/| with Q(?+2)/q-:+§

then the corresponding area measure u.% agrees with the pulled-back mea-
sure ", .

13



e Motivated by the above observation, we make the following definition.

Definition 1.2 (Quantum surface (QS)) Let v € (0,2]. A y-quantum surface is
a collection of pairs (D, Hp) subject to the condition that, for all simply connected

domains Dy, Dy C C and conformal map v : Dy — Ds, the following equality in
probability law holds,

law , ; ; 2 i
Hp, ! Hp, o+ Qlog || with Q==+ %

e See for more details,

[Sch07] S. Sheffield: Gaussian free fields for mathematicians, Probab. The-
ory Relat. Fields, 139, 521-541 (2007).

[DS11] B. Duplantier, S. Sheffield, Liouville quantum gravity and KPZ,
Invent. Math. 185, 333-393 (2011).
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2. QS with Marked Boundary Points (MBPs)

e Hereafter, we set D = H with OH = R.
e Let a = (a1, -+ ,an) be an N-tuple of real numbers.

o Let Confy(R) := {(z1....,2y5) € R¥|2; < --- < wy}. And consider the proba-

N

bility space (Confy (R), F™), P™)) for N-point process X = (X;,..., Xy) € RY.

e For given realization x = (71,...,xy) € Confy(R), we define a function on H

N
e 1) = Z a;log|z — x|, =ze€H.
i=1

(Put (2D Coulomb) a;-charges on the boundary R=0H, i=1,...,N.)

e We consider the assignment

(Ha*,X) : Qg x Confy(R) 3 (w,x) — (Hg(w) + ul*, x).

e We consider an equivalent class induced by the conformal equivalence,
which includes the above triplet (H, 7% X). This equivalence class is called
a QS with marked boundary points (QS-MBPs) (of standard type).

15



3. Two Ways of Sampling QS-MBPs

Setting

e Let 0 <7 < oc and consider a time duration ¢ € [0,77.

e Give an initial configuration of MBPs, X, = (X", ..., X"V} € Conf§(R).

!

16



3. Two Ways of Sampling QS-MBPs

Setting
e Let 0 <7 < oc and consider a time duration ¢ € [0,77.
e Give an initial configuration of MBPs, X, = (Xél), e 3X(_(]N)) € Confy (R).
Sampling A

e Sample a GFF : Hy.

e Sample a time-evolution of MBPs on R starting from given X, :

X, = (XY XYy e Confy(R), te[0.7].

e Using only the final MBPs X, = (Xr}l), L ,X}N)), obtain

N
Hy™" = Hy + ug ™ == Hy + Zai log |- —x{7].

1=1

17
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3. Two Ways of Sampling QS-MBPs

Setting
e Let 0 <7 < oc and consider a time duration ¢ € [0,77.
e Give an initial configuration of MBPs, X, = (X[(}U, e 3X(_(]N)) € Confy (R).
Sampling A

e Sample a GFF : Hy.

e Sample a time-evolution of MBPs on R starting from given X, :

X, = (XY XYy e Confy(R), te[0.7].
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Sampling B

e Sample a GFF : Hy.

e Sample a time-evolution of MBPs on R starting from given X :

Xy =[(X", ... X e CodfH(B), #e [0,7].

e Generate multiple slits {*r)g') = n¥(0,T]}Y, by the multiple SLE g¢;,t € [0,1],
which is driven by X;,t € [0, T].

e Define Hy| by the restriction of Hy in HJ = H\ U 'T}_%f) and put

H,
1 =1

e Then pull back by ¢g;' as

—1x* Xﬂfa
97 Hpg

20




Sampling B

e Sample a GFF : Hy.

e Sample a time-evolution of MBPs on R starting from given X :

Xy =[(X", ... X e CodfH(B), #e [0,7].

e Generate multiple slits {*r)g') = n¥(0,T]}Y, by the multiple SLE g¢;,t € [0,1],
which is driven by X;,t € [0, T].

N
e Define Hy i by the restriction of Hy in H. := H\ U 'T}_%f) and put
z i=1
H]})H{U:Q _ H]I—]I | uﬁ(_]-ﬁ
H7, H. .
Q=Z+12
e Then pull back by ¢g;' as Y 2
—1% 7 X, X,
g7 " Hg" il & Hy® by, g7 + Qlog g7 |

21




Sampling B

e Sample a GFF : Hy.

e Sample a time-evolution of MBPs on R starting from given X :

Xy =[(X", ... X e CodfH(B), #e [0,7].

e Generate multiple slits {*r)g') = n¥(0,T]}Y, by the multiple SLE g¢;,t € [0,1],
which is driven by X;,t € [0, T].

N
e Define Hy| by the restriction of Hy in HJ = H\ U T}_%f) and put
=1

HL.
HXWT* s EF fX[_l-.Or-'
S H B, Uy
e Then pull back by g;' as Coupling GFF and multiple SLE
—1% 7 X, . Xp, e =0
gr " Hy' | Hy" _ g7' + Qloglgr" .
" N

22
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4. Main Theorems

Theorem 4.1 The above two ways of sampling give the same result in distribution,

that 1s,

HXT,(I (lﬂv) —I*HXU,(X

H = 97 H 5
H7.

iof the following three conditions are satisfied,

1) k=7
2 2
(H) (ala'-'aaN):(_a"-a_)n
g Y
Y4
@) PO =), =L,
g=1
JF
ie, X = (X, ., X)) € ConfS(R),t > 0, is the time change of the Dyson model

with parameter g = —.
K

24




4. Main Theorems

Theorem 4.1 The above two ways of sampling give the same result in distribution,

that 1s,
HH-}]I(T’Q (lg‘r) gEI*HH_)H(U,a =
HT
iof the following three conditions are satisfied,
(i) k=12, Relation between SLE and QS
.. 2 2
(i) (a,...,an)=(=,...,=), Charges at MBPs
Y W
Z 4
(iii) FOG)=>)" _i=1,...,N, System of Driving Process
a;'. — x .
i—1 i J

ie, X = (X, ., X)) € ConfS(R),t > 0, is the time change of the Dyson model

with parameter g = —.
K

25




Similar problem can be considered in the orthant in C, O = {z € C: Rz > 0, Yz >
0}, and we can prove the following.

HXT e (]aw —] *HXO QY

Theorem 4.2 The equivalence 15 established,

H
if the following three conditions are satisfied, !
(1) k=9
2 2
(ii) (g, ...y ay) = (—,....—)
v £
al 4 4 446+ K/2
(iii) FO(x) = Z ( + ) + /Z i=1,...,N,
1 i — Ty T;‘i‘TJ; ZL;
J#i
1.8, Xe=(X; (1)3 - ) ) € Confy(Rs),t > 0, is the time change of the Bru—Wishart
. 8 4490
process with parameters 3 = —,v = .
K K

26




5. Proof of Theorem 4.1

e For a driving process X, = (Xf(l), o ?X,@T)) of the multiple SLE, ¢,,t € [0, 7],
let Yo, = (Yoy,..., Yy, ) with

vi.=x¥ i=1,...,N, tel0,T]

Lemma 5.1 The equality f+ = g7 holds.

27



e Define
bo(2) = ug " (FE(2)) + Qlog | fF'(2)]

N
T i il
=Y alog|f () = Y0 + Qlog | f1(2)],  te€[0,T].
=1

and put |
p, :=bh,+ Hyo fl, te 0,77

e By definition, the equivalence

X7,¢ (lﬂv) —1x 17X0,
Hy =gy Hy

)
n
HT

is equal to

Po = P7.

28



Lemma 5.2 The stochastic process h,(z), z € H, t € [0,T] is a local martingale with

imcrement
2 ,
dhe(z) = =) R— —dB,",
= 5 &) Yl(g

if the three conditions of Theorem 4.1 are satisfied.

o2

ceH, te]l0,T],

Proof Assume (aq,...,an) =(2/7,...,2/7).
Note that h(z) is the real part of h)(z) Zlng f: () — Y}‘Q) + Qlog f'(2).

It is easy to verify the equality

If we set k =<2 and use the above equality, then Itd’s formula gives

.t,?j —\/_Z y{?} F(i)(YT;r)_ZT dt

i=1 ft z) j=1 Y1

N ()
2d B, _
- ~,  te]0,T].

slft("“) Ig:

This proves the statement. j

29




In the following, we assume the three conditions of Theorem 4.1.

The above lemma implies that, at each point z € H, the stochastic process
{b:(2) :t € [0, 7]} can be regarded as a Brownian motion modulo time change.

Moreover, the above lemma gives the cross variation between two points
z,w e H as

al 9 9
Hole Bk = ). (%.ffu - yﬁi) (%f;m ~ z@&f‘i) et

30



Lemma 5.3 Define

Gm: (z,w) = Gu(f (2), ff (w)), t€[0,T), zwel

Then

d(h(z), b(w)); = —dGmy (2, w), t€[0,T], z,we M

Proof This can be verified by direct computation. By definition, we have

Gy (2, w) = —log | f(2) — f7 (w)| —log |£7 () — FF(w)].

Thus its increment is computed as

dfz—ll‘ dT,Z,’—le_;
dGHy(z,w) _ R ft ( ) (ft (U) _ R ft ( ) (ff (u)

TE W e 1w
i Zdt it 2t
= — r R — ;
Z (7 (2) fF (w) = Y7, Z (FF(2) = i) (FT (w) — Y1)
N
- Z ( ff 2i)l — ) ( ffj ) “
which is the same as —d(hH(z), h(u ,w € H. g

31



Proof of Theorem 4.1

e For a test function p € C°(H) of zero-mass Ji p(2)dp(z) = 0, we have

d<(h IO) (h ,0)>t — _dEt(p)?

where .
Ei(p) = / p(2) Gy (2, w) p(w)dp®*(z, w)
H2
is non-increasing in the time variable t € [0, T7.

e This implies that (h;,p), t € [0,7], is a Brownian motion such that we can
regard — F,(p) as time variable.

e Thus (hy,p) is normally distributed with mean (h, p) and variance —Ep(p) —
(=Eo(p)) = —Er(p) + Eo(p)

32



P = bt_|_HHoftT7 tE[OJT] ‘ pO :pT'

Proof of Theorem 4.1

e For a test function p € C*°(H) of zero-mass [;. p(z)du(z) =0, we have

d<(h p) (h p)>t = _dEt(p)?

where .
Ei(p) = / p(2) Gy (2, w) p(w)dp®* (2, w)
H2
is non-increasing in the time variable ¢ € [0, 7.

e This implies that (h;,p), t € [0,7], is a Brownian motion such that we can
regard — F,(p) as time variable.

e Thus (h7,p) is normally distributed with mean (h, p) and variance —FEp(p) —
(=Eo(p)) = —Er(p) + Eo(p)
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p; ;= b+ Hyo ftT, L € [0, T]

Proof of Theorem 4.1

e For a test function p € C*°(H) of zero-mass [;. p(z)du(z) =0, we have

d<(h IO) (h ,0)>t — _dEt(p)?

where .
Ei(p) = / /)(3)GH3(3,u.r)p(-u;)du@(z, w)
H2
is non-increasing in the time variable t € [0, T7.

e This implies that (h;,p), t € [0,7], is a Brownian motion such that we can
regard — F,(p) as time variable.

e Thus (h7,p) is normally distributed with mean (h, p) and variance —FEp(p) —
(—Eo(p)) = —Ex(p) + Eo(p).
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p; ;= b+ Hyo ftT, L € [0, T]

Proof of Theorem 4.1

e For a test function p € C*°(H) of zero-mass [;. p(z)du(z) =0, we have

d<(h p) (h p)>t = _dEt(p)?

where . —

E(p) = /H p(2) Gy (2, w)p(w)du®(z, w)

is non-increasing in the time variable ¢ € [0, 7.

Dirichlet energy

e This implies that (h;,p), t € [0,7], is a Brownian motion such that we can
regard — F,(p) as time variable.

e Thus (h7,p) is normally distributed with mean (h, p) and variance —FEp(p) —
(=Eo(p)) = —Er(p) + Eo(p)
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pe:=bs+Hgo f) t€]0,T].

e The random variable (Hyo f1. p) is also normally distributed with mean zero
and variance Ep(p) by the conformal invariance of the GFF.

36



pe:=bs+ Hyo f, t€]0,T].

e The random variable (Hyo f1. p) is also normally distributed with mean zero
and variance Ep(p) by the conformal invariance of the GFF.

e Since the random variable (Hygo [}, p) is conditionally independent of (b1, p),
their sum

(pr, p) == (Hp o ff’ +br,p)

is a normal random variable with mean (h, p) and variance

{—E7(p) + Eo(p)} + Er(p) = Eo(p)

coinciding with (hy + Hy, p) = (po.p) in probability law.
e This implies py S po as C°(H)-valued random fields. The proof of Theorem
4.1 is complete. j

Po = Ppr.

37



6. Concluding Remarks

e Theorem 4.1 is a multi-slit extension of the result by Sheffield [Shel6], in
which the GFF/LQG is coupled with a single SLE curve (i.e., N = 1).

e In the case N = 1, the location of single MBP is irrelevant, since a shift
does not change conformal equivalence. For general N-MBP system, time
evolution of MBPs is essential;

X7« (li“’) —1% 7 X0,
Hy = g7 Hy

n?
]H[T

[Shel6] S. Sheffield : Conformal weldings of random surfaces: SLE and the
quantum gravity zipper, Ann. Probab. 44, 3474-3545 (2016).

38



6. Concluding Remarks

e Theorem 4.1 is a multi-slit extension of the result by Sheffield [Shel6], in
which the GFF/LQG is coupled with a single SLE curve (i.e., N = 1).

e In the case N = 1, the location of single MBP is irrelevant, since a shift
does not change conformal equivalence. For general N-MBP system, time
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(X (law) 1. fXo)o
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® Our results solve the generalized conformal welding problems, whose orig-
inal form (with NV = 1) was proposed and solved by Sheffield [Shel6]. The
key is the following; from our construction, it is obvious the equalities,

B e (n(i)(O,t]L) — I/;XU:” | (n("i)(O,t]R), tel0,T], i=1,...,N, a.s.,
H al L
where VZIXG‘“ is the boundary measure of 7-QS-MBPs, and 7" (0,t];, (resp.

H
n')(0,t]r) is the boundary segment lying on the left (resp. right) of the slit
(4)

[Shel6] S. Sheffield : Conformal weldings of random surfaces: SLE and the
quantum gravity zipper, Ann. Probab. 44, 3474-3545 (2016).
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(H, Hy" (w))

L1 T2 TN
Az ("’) O t — 1,7 (1,) 0 t
I/H]I){fo-a H%(ﬁ ( 3 ] ) v H?Hioa H%(U ( ’ ]R):

@
()
1 2 N
n? i i)
tE[O,T], 7/:1,. .’N’ a.s
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e In random matrix theory, the Dyson model and the Bru—Wishart process
are considered as ‘different systems’ form each other. On the other hand,
‘GFF on H’ and ‘GFF on O’ are y-equivalent in the sense,

@,Hg’“,(X,oo)] _ [H,Hﬁﬂ,(xﬂoo)] |

T Y

where X = ((X,)?, ..., (Xy)?). This suggests a new perspective of random
matrix theory (and multiple SLE, GFF, LQG, ...).

e The relation between parameters of the Dyson model and the multiple SLE
is determined via the present coupling with QS with MBPs as

8 8
f=— = K==

K &

In the (multiple) SLE it is well known that there occur transitions at

ﬁ;gl) =4 and &P =8

C

8

We know the colliding /noncolliding transition at 5% = > = 1 in the Dyson
8

Ke
model. What kind of transition will be observed at 3% = = 2%
Ke
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Thank you very much
for your attention.
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FIGURE 4.1. (I) Tips collide
ey
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. . .( ! .

il 2 1 2

o ) Xy Xq

Ficure 4.2. (II) A tip collides with an already existing slit
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If two slits collide with each other, this event is classified into two cases.

(I) Two tips of slits collide with each other.
(IT) A tip collides with an already existing slit.

Since each of the driving processes is the image of a tip of a slit under the
uniformization map, two of the driving processes collide with each other
when the event (I) occurs.

On the other hand, when the event (II) occurs, the driving processes are
non-colliding even though the corresponding SLE slits are colliding.
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e Following this argument, we could expect that the Dyson model will fall
into three classes.

(A) When g > 2, the particles are non-colliding and the corresponding
SLE slits are non-colliding and non-self-intersecting.

(B) When j € [1,2), the particles are non-colliding, but the event (II)
almost surely occurs.

(C) When g € (0,1), the particles collide, and correspondingly, the event
(I) almost surely occurs.

e Though it is known that the colliding/non-colliding transition occurs at
B =1, the possible phenomenon that the characteristics of the Dyson model
changes at 3 = 2 has not been well studied so far.

e It would be an interesting future direction to find a property that distin-
guishes the Dyson model of § € (1,2) and that of 5 > 2.
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