Two-Dimensional Elliptic
Determinantal Point Processes
and Related Systems

Commun. Math. Phys.
(https://doi.org/10.1007/s00220-019-03351-5)
Joint work with Tomoyuki SHIRAI (Kyushu Univ.)
(https://arxiv.org/abs/1903.04945)

Makoto KATORI (Chuo Univ., Tokyo)
Elliptic Integrable Systems, Special Functions
and Quantum Field Theory

Nordita, Stockholm, Sweden
16-20 June 2019



Plan

1. Introduction to Determinantal Point Processes
2. Partial Isometry and DPPs

3. Orthonormal Functions and Correlation Kernels
4. Seven Finite DPPs on a Torus

5. Symmetry and Bulk Scaling Limits

6. Concluding Remarks



1. Introduction to Determinantal Point
Processes (DPPs)

e Let S be a base space, which is locally compact Hausdorff space with countable
base, and A be a Radon measure on §S.

e The configuration space over S is given by the set of nonnegative-integer-valued
Radon measures;

Carif(§) = £ € = Z(‘Smi cx; €5, £(A) < oo for all bounded set A C S
J

Conf(S) is equipped with the topological Borel o-fields with respect to the vague
topology; we say &,,n € N := {1,2,...} converges to ¢ in the vague topology, if
[ [(@)&n(dx) — [q f(x)é(dx), Vf € Cc(S), where C.(S) is the set of all continuous

real-valued functions with compact support.

e A point process on S is a Conf(S)-valued random variable = = =(-,w) on a proba-
bility space (2, F,P). If Z({x}) € {0, 1} for any point = € S, then the point process
is said to be simple.



Assume that A;,j =1,...,m, m € N are disjoint bounded sets in S.

By definition,

(1]

(A;) = number of points included in A;,j =1,...,m.

For kj € No := {0,1,...},j = 1,...,m satisfying > 7", k; = n € Ny, we consider the

following product of combinatorial numbers,

(2 T S

g=1 g=I1

If its expectation is written as

m E(Aj) o 1 ne.. N B 3 "
i H ( AJ N k] ... }Cm-‘ \[‘l"l p (Ll, T "L'”'))\ (d’L] e d‘l'ﬂ-):

ke
G=1 *SAT XX AR

where \®" denotes the n-product measure of \, then p"(x....,2,) is called the

n-point correlation function with respect to the background measure A.



e Determinantal point process (DPP) is defined as follows [Sos00,ST03].

Definition 1.1 A simple point process = on (S, \) is said to be a determinantal point process
(DPP) with correlation kernel K : S x S — C if it has correlation functions {p"},>1, and
they are given by
P @1y~ s Bn) = . det  [K(zieme)] for everyn €N, and g1y » -8 € 5
<y kb<n
The triplet (Z, K, X(dx)) denotes the DPP, = € Conf(S), specified by the correlation kernel
K with respect to the measure \(dx).

[Sos00] A. Soshnikov, Determinantal random point fields, Russian Math. Sur-
veys 55 (2000) 923-975.

[ST03] T. Shirai and Y. Takahashi, Random point fields associated with certain
Fredholm determinants I: fermion, Poisson and boson point process, J. Funct.
Anal. 205 (2003) 414-463.



e If the integral operator K on L?(S,)\) with kernel K is of rank N € N, then the
number of points is N a.s. If N < o¢ (resp. N = x), we call the system a finite
DPP (resp. and infinite DPP).

e The density of points with respect to the background measure \(dzx) is given by
p(x) == pl(z) = K(z,2).
e The DPP is negatively correlated as shown by

Kz, z) K(’f; ')
K.z Kz 2"
= K(z,2)K(2',2) — |K(z,2)]? < p(x)p(z’), z.2' €8,

p?(x, ") = det

provided that K is Hermitian.
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Poisson point process an example of DPP (Ginibre DPP)

(Computer simulation by T. Matsui (Chuo U.))



Let L?(S,)\) be an L’-space.

For operators A,B on L*(S,\

_ ), we write A > O if (Af, f)r2sy) = 0 for any [ €
LABA) and A>BiF A—B = @,

For a compact subset A C S, the projection from L?*(S,\) to the space of all
functions vanishing outside A M-a.e. is denoted by P,. P, is the operation of
multiplication of the indicator function 1, of the set A; 1,(z) =1 if 2 € A, and
15(x) = 0 otherwise.

We say that the bounded Hermitian operator A on L?(S, ) is said to be of locally
trace class, if the restriction of A to each compact subset A, A\ := P, AP,, is of
trace class; Tr Ay, < oc.

The totality of locally trace class operators on L?(S,)\) is denoted by 7| ,.(S. \).



® Here we recall the existence theorem for DPPs.
e Let (S, )\) be a o-finite measure space. We assume that K € Z; 1,.(S, \).

e If, in addition, £ > O, then it admits a Hermitian integral kernel K(z,2’) such
that [GYO05]
(i) deti<jr<n[K(2j,2¢)] > 0 for A¥"-a.e. (21,...,2,) for every n € N,
(i) Ky :=K(,2') € L*(S,]) for M-a.e. 7,
(ili) TrKj = [, K(z,2)\(dz), A C S and

1x (Ipf'\}cnlpﬁ) — / <I{:L‘”‘| KH_2I{:}:">L?(5‘__)‘))\(d.il’)!), ¥n € N.
A

[GYO05] H.-O. Georgii and H. J. Yoo, Conditional intensity and Gibbsianness of
determinantal point processes, J. Stat. Phys. 118 (2005) 55—84.



Theorem 1.2 (Sos00,ST03) Assume that K € I110c(S,\) and O < K < I. Then there
exists a unique DPP on S such that the correlation function is given by

2l B )| = ¢TIy o B s s B ;.
O oo vl 13(}?571[]&('lj’d'}‘)]’ neN, x1,...,2, €S

[Sos00] A. Soshnikov, Determinantal random point fields, Russian Math. Sur-
veys 55 (2000) 923—975.

[ST03] T. Shirai and Y. Takahashi, Random point fields associated with certain
Fredholm determinants I: fermion, Poisson and boson point process, J. Funct.
Anal. 205 (2003) 414-463.
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If K € Z11,.(S,)\) is a projection onto a closed subspace H C L*(S,)), one has the
DPP associated with K and )\, or one may say the DPP associated with the
subspace H.

This situation often appears in the setting of reproducing kernel Hilbert space
[Aro50]. Let F = F(S) be

a Hilbert space of complex functions on S with inner product (-,-)r. A function
K(z,2') on S x S is said to be a reproducing kernel of F if

1. For every 2’ € S, the function K (-,2’) belongs to F.
2. The function K(x.2’) has reproducing kernel property: for any f € F,

f&)={(), K (. 2))r.

A reproducing kernel of F is unique if exists, and a reproducing kernel of F exists
if and only if the point evaluation map F > f — f(z) € C is bounded for every
res.

The Moore-Aronszajn theorem states that if a kernel K (-,-) on xS is positive def-
inite in the sense that for any n > 1, x1,...,2, € 5, the matrix (K(xj,2));ref1,..n}
is positive definite, then there exists a unique Hilbert space Hy of functions with
inner product in which K(x,2') is a reproducing kernel [Aro50]. If Hy is realized
in L%(S,)\) for some measure )\, the kernel K (z,2') defines a projection onto Hy.

[Aro50] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc.,
68 (1950) 337—404. 11



e In the present talk, we consider the case that

Kf=f forall fe(kerK)t c L*(S,\),

where (ker )+ denotes the orthogonal complement of the kernel of K.
e That is, K is an orthogonal projection.

e By definition, it is obvious that the condition O < K < [ is satisfied.

12



e The purpose of the present talk is to propose a useful method to provide orthogo-
nal projections K and DPPs whose correlation kernels are given by the Hermitian
integral kernels K (z,2/),z,2' € S of K.

e As examples of DPPs constructed by this method, seven kinds of DPPs on a
torus are introduced using the R jy-theta functions of Rosengren and Schlosser
[RS06] for the seven irreducible reduced affine root systems.

e In the bulk scaling limit, they are degenerated into the three types of Ginibre
DPPs on a complex plane with an infinite number of points.

[RS06] H. Rosengren and M. Schlosser, Elliptic determinant evaluations and
the Macdonald identities for affine root systems, Compositio Math. 142 (2006)
937-961.

13



2. Partial Isometry and DPPs

e First we recall the notion of partial isometries between Hilbert spaces.

e Let Hy,/ = 1,2 be separable Hilbert spaces with inner products (-,:)y,. For a
bounded linear operator W : Hy — H>, the adjoint of W is defined as the operator
W*: Hy — Hp, such that

WF .9, = (f W*g)g, for all f € H; and g € Hs.

A linear operator VW is called an isometry if

W Hlla, = | fl|m,  for all fe Hi.

e For )V its kernel is denoted as ker W and the orthogonal complement of ker )V is
written as (ker W)=,

e A linear operator )V is called a partial isometry, if

WSl = [1fllm,  for all f & (ker W)™

14



e For the partial isometry W, (ker W)1 is called the initial space and the range of
W, ranWV, is called the final space.

e By the definition, ||Wf|[3, = W W )n, = (. WWf)u,.

e This implies the following.

Lemma 2.1 The bounded linear operator W (resp. W*) is a partial isometry if and only if
WW  (resp. WW?*) is the identity on (ker W)+ (resp. (kerWW*)+).

15



We put the first assumption.

Assumption 1 Both W and W* are partial isometries.

Under Assumption 1, the operator W*W (resp. WW?¥) is the projection onto the
initial space of W (resp. the final space of W).

Now we assume that | and H; are realized as L°-spaces, L?(S1, A1) and L?(S, \2),
respectively.

We consider the case in which VWV admits an integral kernel W : S5 x S; — C such
that

VW = [ Wa)f@h(d).  f e XS0,

and then

W) = [ WgalglyDaldy). g€ LS o).
JSo

16



e We put the second assumption.

Assumption 2 W*W € 7 1,.(51, A1) and WW* € T 1,c(52, A2).

e We have

WW[)(x) = i Kg, (,2") f(2")\(da'), [ € L*(S1, M),

WW*g)(y) = K, (. )9 ) Ma(dy'), g€ L*(S2. A2).

with the integral kernels,

KSl (33,33,) = S W(:(/,I)W(y, x,))\Q(dy) = (W('JQ;J)?W('am»LQ(SQ,)\Q)J
2

K82 (yvy,) = S W(yam)W(y,am))\l(dm) - <W(ya ')a W(y,a ')>L2(Sl,)\1)'
1

e We see that Kg, (2/,x) = Kg,(x,2') and Kg,(v,y) = Ks,(y,9').

17



e The main theorem is the following.

Theorem 2.2 Under Assumptions 1 and 2, associated with W*W and WW?™, there exists a
unique pair of DPPs; (21, Kg,, \(dz)) on S1 and (29, Kg,, A2(dy)) on Sa. The correlation
kernels Kg,,{ = 1,2 are Hermitian and given by

K, (z,2") = /5 W (y,z)W (y, 2" ) Aa(dy) = (W (-, 2"), W (-, ) 12(5p,2)

Ks,(y,y) = /

Wi )W (Y, x) A1 (dx) = (W(y,-), W', ) L2(sy 2)-
2]

18



3. Orthonormal Functions and Correlation
Kernels

In addition to L?(S;, \¢), ¢ = 1,2, we introduce L*(I',v) as a parameter space for
functions in L?(Sp, \¢), 0 = 1,2.

Assume that there are two families of measurable functions {¢1(2,7v) : x € 51,y € I'}
and {12(y.7) : y € S2,7 € '} such that two bounded operators U, : L?(S;, \¢) —
L?(T',v) given by

fOv) = U f)(y) = /5 Ve(z,7)f(2)Ae(dz), £=1,2,
e
are well-defined. Then, their adjoints U] : L*(T,v) = L%*(Si, M), £ = 1,2 are given by

U F)() = / el 1) F()u(dy).

"

Now we define W : L?(S1, A1) — L?(S2,X2) by W = US| i.e.,

o~

W) (y) = / (s ) Fw(dn).

r

19



e We can see the following.

Lemma 3.1 If
Uy =TI forl=1,2,

then both W and W* are partial isometries.

Proof It suffices to show that WW*)}/ is an orthogonal projection, or equivalently,
it suffices to show (W*W)? = W*W since W*W is self-adjoint.
By the assumption, we see that

WAW = (UEUy ) USUy = U (Ual)U = UL .

Hence, (W*W)2 =UTZ/{1M{M1 == Z/{fz/ﬁ = W*W.

By symmetry, the assertion for W* also follows. g

20



We note from the proof that W*W = U;U; and WIW* = UsUy so that U,.( = 1,2 are
partial isometries.

Assumption 3 We assume that U, = It for { =1,2.

Assumption 3 can be rephrased as the following orthonormality relations:

(We(-,7)s Ve YN L2s v (dy) = 0(y —v)dvy, .7 €T, £=1,2.

We will use these relations below.

The following is immediately obtained as a corollary of Theorem 2.2.

Corollary 3.2 Let W = U5U; as in the above. We assume Assumption 3 in addition
to Assumption 2. Then, there exist a unique pair of DPPs; (21, Kg,,A1(dx)) on S1 and
(Z2, Ks,, Aa(dy)) on Ss. Here the correlation kernels Kg,,£ = 1,2 are given by

K, (z,2") = /F 1 (z, v (2, y)v(dy) = (W(x, ), v1(2', ) L2(r ),

Ks,(y,y') = /r 2y, V)2 (Y, Vv(dy) = W2y, ), v2(y', ) p2r )

21




4. Seven Finite DPPs on a Torus

e We will consider the finite DPPs on a surface of torus with double periodicity
2wy = 2w, 2ws = 27 with

T=iSTeH:={2€C:32 >0}, i:=+v-1.

e The surface of such a torus T? = T?(27,277) := S'(27) x S'(27r37) can be identified
with a rectangular domain in C,

Drormy ={2€C:0< N2 < 2m,0< 32 <2737} € C with double periodicity (27, 277).

So we first consider the systems on D o).

<= 27 =
NG

7 A

= /\ D(Q’}T,QT?T) /|\ st

NN\ v

ez

22



e Let S =C. For 2 € C, we write xp := Rz, 21 :

e The background measure is given by

ddexh

ANdz)=1p,_, . (z)dr = {O

%
3

(33 = IR + 121 € D(?W,QTW)))
(33 §é D(?TT,QT?T))'

23



Let

P emm} q = e

for v € C and 7 € H. The Jacobi theta functions are defined as follows,

vo(v;7) = Z(—l)”q” =142 Z )" T cos(2nmv),

neZ n=1

191(@;7_) _ ?’Z(_ n (n 1/2)? 2n 1 _ —9 Z n 1 TT{"L n—1/2)2 5111{(272, L 1)71'?)}
nez n=1

192(?); T) _ Z q(n—l/2)222n—1 — 9 Z e’mm'(n—l/?)“2 COS{(2R . 1)7_(_?)}’

nez n=1

2 > 02
— Z qU P =1+2 Z e cos(2nmw).
nez n=1

24



e We define the following four types of functions;

04 (0, 2,7) = ™y (0T + 2;7),
OF(0,2,7) = ™% (o7 + 2;7)
0%, 2,7 ( )
OF (0, 2,7) = ™77y ( )

forceR,zeC,reH:={2€ C:3z > 0}.

25



e We consider the seven types of irreducible reduced affine root systems Ry = Ayx_1,
By, BXH Cn, OI\\,/TS BCy, Dy, N €N.

e The following seven functions are essentially equal to the Ry-theta functions of
Rosengren and Schlosser [RS06],
for N € N,

g0 s '_NR;'\""'E‘,.’I‘:?‘/(QT?T) JRN
w.f;\r.l(zﬂ'..z?‘?r) (:E) . € I @ﬂ(H\r) ( (H)

JNEN J\/'Rf\'7'> , ne{l,...,N}
o R ! ‘ ? ) ) .
BN (1) Al 2

[RS06] H. Rosengren and M. Schlosser, Elliptic determinant evaluations and
the Macdonald identities for affine root systems, Compositio Math. 142 (2006)
937-961.

26



e For NV € N, let

Rl T:
g e weay [N (N . B )
: .R_,\. (27, 21T) (33‘) - (.—)H(R}\) ( ),NR'N il NRJN T n e {1_} . ,JV}.
" Ry NEN 27 ’ :
Y (1)
where ¢ v R i
A if Ry = An-1, o a ===
B if Ry = By, BY 2 s iy =B,
RJT\'." — 4 ) 1 y N . v W
B0=1c, i Ry = Cn, C¥, BCN, NBx _ )2 Ry = By, Cy;
D if Ry = Dy, 2(N =1}, Ry = Cy,
2N + 1, Ry = BCy,
— \%
7?—‘1/2, RN—A]V_L ON, \2[}\;’_1)” R;'\-" - D;'\."g
JEN () =dn -1, Rx = By, BY,, D,
LT Ry = Cy,BCy,
and we set
4 A ‘ Sy i ; N — 4 NN — - T
haV='(r) = 4x? 5]5ggt76—szJA- LI me P An-1}
. ¢ Q}‘T B I (n 2 N ¥ ¥ '
hﬁwr)zsﬂ%/zNwNe3~-”“{)fo“, ne{l,...,N}, for Ry = Cy,C¥,BCx
1672 2}3’1’\ E:-_sz"JR‘\: [”}2’("\{5‘"\', n=1
hEN (1) = ¢ for Ry = By, BY,,

82 ST e 2rmid Ry (n)? N PN
\ 2_,'\{5’_\' 4 ;
i v .
16?;’2 oA F—?Tm’.,} DN (n)? /NPN
INEN .

(6]
2 3T
SN e

\ 2N N

C—?TrrfJDN ( ?1)3,/_;\"'[‘1:\'

& L%8, 000 N

ne{l,N}

ne{23,...,.N—1}.

27




e For N € N, let

_ —NEN g /(47m) _ Ry

F (2w, 21w € : 8 R J ( ) 7 i

PRN (2727 () — . Oi(RN) ( R NEN L AR ,r) , ne{l,...,N}
) T

Then we can prove the following.

Lemma 4.1 Let N € N. Then, if n,m € I' := {1,...,N}, the following orthonormality
relations are established,

Ry (2n2r7) . Rn,(2n2rm)y
<‘1‘9n +Pm >L2 (C,ID(szTF) (x)dr)

_ / PN (2.27) (13 SRy (2m.27) (3 1o
(29,27 )
N 2/

27T —NR E
/ dJ:R/ d:L]
V() f-i:’“(fr)

B ,. B
« OHRN) (JA;R('?),NR;\;_;T’NRNT) o (Rw) (JA;R(SEJ ,NR\ NRA T)

=0 Iy

fOT R.N = AN—] 3 B,N? BK’& CNF. Cj\\/“ BC.N: Df\'r°

e Then Corollary 3.2 (prepared for a pair of orthonormal functions) can be applied

to the above seven sets of orthonormal functions with a discrete parameter space
I'i=41,...,.8N} N &N. 28



e For N € N, let

Ry (2m.277) -_—.N'R\ ix? [ (4rm) y (Ry) JERN ( ) NR .N’R _
HBN,(2m,277) () — € Qan) 2 N N 8 Ay i s N L
n (3’) \/h ( N.H‘\ A’ T) n { 1 y }

Then we can prove the following.

Lemma 4.1 Let N € N. Then, if n,m € I' := {1,...,N}, the following orthonormality
relations are established,

Ry (2n2r7) . Rn,(2n2rm)y
<‘1‘9n +Pm >L2 ({C’lD(%.‘zﬂr) (x)dr)

_ / R\r (27, 27m) (a:)(fji;\;,(Qﬂ,QT?T) (’L’)dT
(27,27)

27T | —NRN s [ 2nS¥r)
/ le/ d:L] <
Vi (e A (r)

m

RN RN
« OHRN) (_JA;"R(:'), NP N ) Qi(RN) (JA;R(?[ R prhn ,>

=0 Iy

fOT R.N = AN—] ? B.N? BK’& CNF. Cj\\/“ BC.N; Df\'r-

e Then Corollary 3.2 (prepared for a pair of orthonormal functions) can be applied

to the above seven sets of orthonormal functions with a discrete parameter space
I'i=41,...,.8N} N &N. 29



e We obtain the seven types of DPPs with the correlation kernels,

I(R\ (2, QT'H' Z (r/R\ (27, 2717) ) By, (27 2m7 )(l-"),

“n
n=1

with respect to the measure \(dx) = lp{zﬁ_QTﬂ)dI on C for Ry = Anx-1, BNy By, Cn,s
C¥» BC, Dy.

e Using the quasi-periodicity of the Jacobi theta functions, we can show that the
correlation kernels are quasi-double-periodic as,

KRN,(Q?T,‘ZT?T)(:E + 27_‘_31,!) - I{'.RN,(QE.QT:T)(Q.:E 2 i 27_1_)

(_1))\‘"4_&;_] IK’RT\;"(2TTZTT(—)(:},;.T!)’ Ri\r — A\._l
= ¢ —KBw2m2rw) i pl) Ry = By, C¥, BCy,
KRNT(QW{QTW) (3:" 37") Ry = BN’ Cn, Dy,
—N’ ‘N ix Ry .27 2Tm o " ) \ i ]
KBRNQm2rm) (4 4 97m o)) = RN, (z,2'), Ry = An—1, Cn, Oy, BCN, Dy,
L _e—N IN 1TR I{RI\",{Z'J‘T?QTW (SC., T )1 R?\f e B?\T, B\f.
NEN iz Ry ,(2m,277) _ ) \V/ ) .
o e R K T & Ry = An_1,Cn, Cx:, BCpn, Dy,
_[{R__\-,(zﬁ.g‘rﬂ)(m?a:f + 27_7{_) _ { ( ) N—-1, » UN s , /N

G’NH\ ix! IfR\ (2m,277) (1 .’13’)? RNr _ Bf\ﬂ B}\.'/r
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e The above implies the following double periodicity (up to an irrelevant gauge
transformation),

()Nﬁ’ Ni TR

- N “) 9 ] F ol AT ‘. T .‘
SQW}& B ol a2 (1?, QT’) = TSQT?TB B, (2midrm) (iL’._. Zlf!)
F’,N Naxp '

= Kfn@m2rm) (0 g al € D2 9rm):
where S, denotes a shift by u: for u € C, §,= := Ej Oz +us

SuK(z,z') = K(z +u,z’ +u),
and S, \(dx) = AM(u + dz).

e In other words, we have obtained the seven types of DPPs with a finite number
of points N on a surface of torus T?(27, 277).

e Hence here we write them as (Efk’%?%jm),da:), Ry = An-1, Bn, By, Cn, CY¥,
BCpn, Dn.
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Using the Macdonald denominator formulas given by Rosengren and Schlosser
[RS06], the probability densities for these finite DPPs with respect to the Lebesgue

N .
measures, dr =[] j—1 dx; are given as follows;

Ai\r_l 1 N}i} N—1 if\)"' ;‘)
T2(27,277) gl
'
N
I’I" i T - m - .
o Z —anr | W ] (— 'r) if N is even,
~ 29T 2T
% 4 =
N
) T N N £T . e
U3 Z —r | W A1 (r—;'r) if N is odd,
- 2% 27
\ —

1

NR_-\.-’

exp

By | a2 rRa (L [
P’[r2(2w._2m)($) 2n 3T Z(‘LJ)I ‘M (2W’T)‘ ?

F— R;\T
7 s

T2(2m,277)

Ry = By, By, Cn, Cy, BCn, Dy,

for x € (T?(27,277))Y, where W~ are the Macdonald denominators given as

Ry are normalization constants.

follows and Z; (27,277)
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e For 7 € H, the Macdonald denominators are given as

WAz = [ i -2,
1<j<k<N

WB]\ Z 7— Hﬁl 20T H {?91(25,% —ZjQT)ﬁl(Zk+Zj§T)}:
1<j<k§N

Vv

WEN (z;7) Hﬁl 22¢; 27) H {ﬁl(zf’f _ZJ5T)191(Z"€+Z‘7;T)}’

1<j<k<N
N
WON(z:7) = Hﬁl(%g;’r) H {fﬁl(zk — 23 T)V1 (2 + Zj;’r)},
(=1 1<j<k<N

1<j<k<N

~
Il
H

WBON (2, 7) = ﬂ {ﬁl(zg; )0 (22¢; 27)} H {ﬁl(zk — 25 7)01 (21 + Zj;T)},
(=1 1<j<k<N
WDN(z;T) — H {ﬁl(zk_ —zj;T)ﬁl(zkszj;T)}.

1<j<k<N
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5. Symmetry and

Bulk Scaling Limits

e We can prove the following symmetry properties for the present DPPs on T?(27. 277 )s

following shift invariance,

Cn
P2 (27,277)

Proposition 5.1 (i) The finite DPPs (E,K

Ry

T2(27,277)’ the

dr) with 7 = 17 € H have

(lﬁv) An_q

= Af\'r—l 5 = =
SQW/N('_‘-" I{']I'2 (2m,277)’ d'l) o ('_" K’]P (2w, 27m)? diL)
— AN 5 law) o oA |
S?T’Ir/.N(:‘? RTQ}QWI,QTW)’ df})) — (:"_3 IXT2}2;12TW)¢ dﬂ)
— RN’ (Iﬁv) = ,YR‘N' o V
S’}T(‘—‘p ](TQ(Q‘?T,QT'?T)? dl‘) — (H-} RT2(2‘}T2‘T‘H’)‘ dil'). Rj\. — BJ?\‘,F’ CJN?? Dir\,r_}
Ser(E, K| dr) "= (=, K dr), Ry = Cy,C¥,BCN,D
T\ B2 (27, 2rm)r ) T WS B2 (20,200) @) BN T VN, NS BRN, LN
(ii) The densities of points p.?g"‘(r%_%ﬁ)(a’:) given by K%’\(’%QW) (x,x) have the following zeros,
By -
p']I‘2(27r._21'7r)(0) - 0'*
By _ B _
pTQ(Q?T 2’?‘?1’)(0) i pTQ(‘z?T?QT?T) (ﬂ-) =0,
Rn _ BN _ WV :
pTz(Qﬁ__gTﬁ)(U) — p']r‘z(gﬁ,gf,-ﬁ) (T'*‘T) =0, Ry= CN? BCy,
(0)
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e We note that the periodicities 27/N € R and 277/N € H of (=, I’A‘\ _ dx) shown

(27,277m)?
by Proposition 5.1 (i) become zeros as N — .
e Hence, as the N — oc limit of (2, K ! - dx), it is expected to obtain a uniform

T2(27, 277
system of infinite number of points on fC.

e We introduce the following operation.

(Dilatation) For c > 0, we set coZ:= ) . i,

¢o K(i, 2" i=K (—’, —) . xa €es,

and co \(dz) := A(dz/c). We define co (2, K, A(dx)) := (co Z,co K,co A(dx)).
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Proposition 5.2 The following weak convergence is established,

e \ ! = prA ) 8
2V g7’ (“’AW(Qw,zm)’dx) — (“’hGi“ibre’)‘NUJ:{C)(da’))*

N I 2 Nt e i V V
: QW%T © (‘:‘3 Ii’]l‘.?(2ﬂ-‘21-.}-r)* daj) > (‘:‘7 [XGinibrea )\1\(01{@) (da:)) ? Ri\'r — Bi\"v: Bf\?"p Cj\"g Cj\ﬁ BCI\J.;

N
2 ST

— 1-Dn Nooo (= 1-D ;
2 (“’I&TQ(QW,QT?T)?d:E) — (‘—‘5I‘Ginibre:)\N(U-,];{C)(d‘lj))?

where the limit point processes are the three types of Ginibre DPPs given below.

/X@)
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Three types of Ginibre DPPs

e The background measure is the complex normal distribution,

x|

| [
AN(0,1;0)(dx) = —e | drrdr.

i

e The correlation kernels are given by

!

A T
KGinibre (‘/Ea 'T!) - )

9 . = ufi o)
KGinibre (il,,_ ‘/E!) — SIIlh(:I?.L‘!)_,

I
o

KE .o (z,2') = cosh(zz!), z,2’€C.
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élinibre(ma CL‘!) =" ’ Rleble(q L ) — Slllh(.l‘l")? I‘lebxe(l £ ) — (IOSh(CE‘CE'), 3:755! = (C:'

1 oz
AN(1;0)(dE) = —e |

|2d:LRdx1

e The DPP, (Z, I{éixli};u-ea)‘N(U,l;ﬁi)(dx)) describes the eigenvalue distribution of the
Gaussian random complex matrix in the bulk scaling limit, which is called the
complex Ginibre ensemble. This is uniform on C with the density

_ 1
A
pGinibre(x)d‘T = IXGinibre(i’Ua x)AN(O,l;C)(dI) = ;dﬁfﬁ,dﬁ?_{.} z € C.

e On the other hands, the Ginibre DPPs of types ' and D are rotationally sym-
metric around the origin, but non-uniform on C. The density profiles are given
by

o, 1 o2
pginibre(:r)dx == J§ &nibre(a:: ar))\i\-(ozl;c)(da:) = 2—(1 — g2l Jdrrdr, x € C,

Y

1 _ ,1.2
PG l]]lble(j) I{(ﬂmhre(1 ?))\\(0 1; (C)(dl) 9 (1 i€ 21z )dﬂ?R_d.’l’?I, x € C.

/i
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6. Concluding Remarks

e Among the present seven types of finite DPPs on a torus, the three types
(An_1,Cn, Dy) were extended to the 2D exactly solvable one-component plasma
models in [K19].

e Relationship to the Gaussian free field on a torus was also discussed for these
three plasma models in [K19].

[K19] M. Katori, Two-dimensional elliptic determinantal point processes and re-
lated systems, Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-
019-03351-5.
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e In [KS19+], we have demonstrated that the class of DPPs obtained by our method
is large enough to study universal structures in a variety of DPPs by showing
plenty of examples of DPPs in one-, two-, and higher-dimensional spaces 5.

e There we have shown that the family of DPPs given by our method is a gener-
alization of the class of DPPs called the Weyl-Heisenberg ensembles studied by
Abreu et al.

For d € N, let
$1=C% S =I=R"

with the Lebesgue measures \|(dx) = drrdry, A2(dy) = dy, where x = xr + ix; with

TR, 21 € RY. Provided that ||G||%2(R2_dm) =1, we have

Wwuf)(y) = / G(y — zr)e "W f(gg + izy)derdry, f € L*(CY, derdzr),
(Cd

Wiyng) () = /Rd G(y — zr)e*™ g(y)dy, g€ L*R% dy),

Kwn(z,7') = /R Gy — zr)G(y — af)e*™ ¥ 1=y, (6.1)

for (z,2') = (xg + iz, x + iz}) € C? x C%. The second formula in (6.1) is regarded
as the short-time Fourier transform of g € L?(R¢,dy) with respect to a window
function G € L*(R?, drg) [Grochenig 2001]. The formulas (6.1) define the Weyl—
Heisenberg ensemble of DPP, (=, Ky, drrdrr), studied by Abreu et al.

[KS194] M. Katori, T. Shirai, Partial isometries, duality, and determinantal
point processes, arXiv: math.PR/1903.04945. 40



e With L?(S,\) and L?(I',v), we can consider the system of biorthonormal functions,
which consists of a pair of distinct families of measurable functions {¢(z,v) : z €
S,veTl'} and {p(z,7) :x € §,7 € I'} satisfying the biorthonormality relations

W), (Y N2 ayv(dy) = 6(y —+')dy, 7,7 €T. (6.2)

If the integral kernel defined by

K" (z,2') = / b p@ (dy), e €S, (6.3)
r

is of finite rank, we can construct a finite DPP on S whose correlation kernel
is given by (6.3) following a standard method of random matrix theory. By the
biorthonormality (6.2), it is easy to verify that K" is a projection kernel, but it
is not necessarily an orthogonal projection. This observation means that such
a DPP is not constructed by the method reported here. Generalization of the
present framework in order to cover such DPPs associated with biorthonormal
systems is required. Moreover, the dynamical extensions of DPPs called deter-
minantal processes shall be studied in the context of the present talk.
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Thank you very much
for your attention.

e M. Katori, Two-dimensional elliptic determinantal point processes and related
systems, Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-019-
03351-5.

e M. Katori, T. Shirai, Partial isometries, duality, and determinantal point pro-
cesses, arXiv: math.PR/1903.04945.
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