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1. Hilbert Function Spaces, Reproducing Kernels,
Conformal Maps, and Conditional Hilbert Function Spaces

‘H : A Hilbert space of holomorphic functions on a domain D in C
an inner product (f, g)»

((af +bg, hYw = alf, by + blg, h),
¢ (h,af +bg)y = E(h,i}y +blh,9)n, f,9,heH,abeC
\ <g! >7—£ — <fag>?-£ — <f:§>?—£:

the norm || f||% := V/{f, f)nu

For each point w € D, there is an element of H, k, € H, with the property

<f:' ku-‘)'H — f(’LU) vf € H.
Since k, € H,z € D, if we put f = k, and write ky(-, w) := k,(+), then

<k7{(':z)ak?{('aw)>?{:k?{(u}:z)a Z,?UED.

This two-point function ky(z,w),z,w € D is called the reproducing kernel of H.
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For a Hilbert space H of holomorphic functions on D,

there uniquely exists a kernel ky(-,-) with the reproducing property

(k'H('?z)a k?{('a(w))?{ — k?{(wa Z): Z,W € D.

By definition, the reproducing kernels is Hermitian: ky(z,w) = ky(w, 2), z,w € D.
Semi-positivity of reproducing kernel is readily obtained by the reproducing property.
For an arbitrary n € N := {1,2,... },

arbitrary n points 21,...,2, € D and n complex variables &;,...,&, € C,
SN knlar 2)68 = D Y k(s 25), ke, 2)) e
J=1 k=1 j=1 k=1
n n T 2
= (Y k56 Dkl 206 = | Yo k)|, 2 0.
j=1 k=1 j=1

This is equivalent with the fact that 1<d?t;< [k‘q{(zj} zk)} >0VneN, Vz,...,2, € D.
<jk<n

4/50



A complete orthonormal system (CONS) {e,;n € Z}: (en,em)n = Onm, n,m €L
feH <— f= chen with (¢,)ner € 2(T)

nel

The reproducing kernel has an expression, | ky (-, w) := Z en()en(w), w e D.
nel

Actually, this gives

<f()a k’H('aw))H = <Z Cmem(')a Zen

merl nel

= chen(w) = f(’bU) Vf & H, wE D.

nel

> Z Zcm €Em, En ’H,en( )

meTL nel
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Example 1 Let D =D:={z € C:|z| < 1} (the unit disk)
L4(D): the Bergman space on D
:= the Hilbert space of holomorphic functions on D,
which are square-integrable

with respect to the Lebesgue measure m(dz) on C.

. 1

inner product: (f, )2 ) = E/f(z)g(z)m(dz)
D

CONS: é,(2):=vn+12",n e Nyg:={0,1,...}

reproducing kernel: the Bergman kernel of D

Kp(z,w) := krzp)(2, w) = Z (n+1)(zw)" = = z,w €D

neNy
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Example 2 Let D =D :={z¢€ C:|z| < 1} (the unit disk)
H?(D): the Hardy space on D
:= the Hilbert space of holomorphic functions on ID such that
the Taylor coefficients form a square-summable series; Z l]?(n)\Q < 00
n€eNp

inner product:

(Y Fn)a(n)
(fs @) 2m) = < RTNO f,g € H*(D)
o [ ST s

(The latter is the integral over boundary with the arc length measure).
CONS: e,(2) =e®(2):=2",neN,
reproducing kernel: the Szeg6 kernel of D

1
Sn(z,w) = ki) (z,0) = Y ()" = ——, zweD

1 — zw
neNy
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Let f: D — D be a conformal transformation

between two bounded domains D, D C C with analytic boundaries.
The Szegé kernel is transformed by f as (f'(2) := df(z)/d=z)

Sp(z,w) =/ f'(2)V/ f'(w)Sp(f(2), f(w)), z,w € D.

[Bell6] Bell S. R.: The Cauchy Transform, Potential Theory and
Conformal Mapping. 2nd edn, CRC Press, Boca Raton, FL (2016)
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Let f: D — D be a conformal transformation

between two bounded domains D, D C C with analytic boundaries.

The Szegd kernel is transformed by f as (f'(z) := df(z)/dz)
(,w0) = VIRV @)S5(F(2), f(w)), 2w € D.

Consider the special case in which D C C is a simply connected domain and D =D.
1
1—z2w
For each a € D, Riemann’s mapping theorem gives a unique conformal transformation:

Remember that Sp(z,w) =

h, : D — D (Riemann mapping function) such that h,(a) = 0, A/ (a) > 0.

= /B (2)\/ P, (w)Sp(ha(2), ha(w))
SD Z G,)SD( ) 1
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Example 3 Fix g€ (0,1). Let D=A,:={z € C:q<|z| <1} (an annulus)
H?*(A,): the Hardy space on A,

inner product: (given by an integral over boundaries with the arc length measure)

1 1
(f,9) m2(a,) = % fle \/—qb) (eV=19)do + % f( ) (geV=19) qdo,
fa g € HQ(AQ)
CONS: e,(z) = eg?q’Q) B) = 2" , neEZ
CONS: e0(2) = €f1(2) = — s
reproducing kernel: the Szeg6 kernel of A,
SAG z'w Ze(qq ): Z 1:?’;02)11;1, Z,’LUGAQ
neZ n=—o00

For each a € Ay, Si, (a,@) = S, (@,a) = 0 with |d = —=.
a




Example 4 Fix qe€ (0,1). Let D=A, :={z2€ C:q < |z| < 1} and assume r > 0.
HZ2(A,): the Hardy space on A, with parameter r

inner product:

1 27 1 2T
(figmway =5 f (V1) g(eV=19)dp+ — [ fge¥~1?)g(geV=1¢)rdo,
T Jo 21 Jo
CONS: e,(2) =€l27(2) := - n € Z

reproducing kernel: the weighted Szegd6 kernel of A, with weight parameter r

o0

- zw)"
SAq(z,w"!‘ Z (g,r) (Q) (w) = Z ﬁ, Z,w E A,

neL n=-—o0o
By definition Sy, (2, w) = Sa, (2, w;q), z,w € A,.
[MS94] Mccullough, S, Shen, L.C.: On the Szeg6 kernel of an annulus.

Proc. Amer. Math. Soc. 121, 1111-1121 (1994) / %
n
% 4




Let f: D — D be a conformal transformation
between two bounded domains D, D C C with analytic boundaries.

Here we consider the case in which D is a 2-connected domain and D = D.

For each a € D,
f - D — D (Ahlfors ma

Ja . J. ALiIL

a branched 2 t
in which a unique point @ = a(a) # a, a € D exists such that f,(a) = f.(a) =0

1 covering map of D to D,
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Here we consider the case in which D is a 2-connected domain and D =D.
For each a € D,

fo : D — D (Ahlfors mapping function)

a branched 2 to 1 covering map of D to D,
in which a unique point @ = a(a) # a, a € D exists such that f,(a) = f,(a) = 0.

I 1
Ahlfors map f, for D = A, with ¢ = 3 and a = —.

; - q 1 2
1n 1S case |a = 3 3




Here we consider the case in which D is a 2-connected domain and D =D.
For each a € D,

fo : D — D (Ahlfors mapping function)

a branched 2 to 1 covering map of D to D,
in which a unique point @ = a(a) # a, a € D exists such that f,(a) = f,(a) = 0.

I 1
Ahlfors map f, for D = A, with ¢ = 3 and a = —.

; - q 1 2
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Consider again Example 3: the Hardy space on A,, H*(A,)
inner product:

1 2T

- 1 27
(f: 9) 2y = 5 0 f(e‘m‘f’)g(e‘/“_m)dévL% i f(ge¥="%)g(qeV=19)qd¢,

f? g = HQ(AQ)
the previous CONS: ¢, (z) = 49 (2) := i

/1 + q,QfM.—I—Ij W= Z

Remember that for each a € Ay, Sy (a,a) = Sy, (a,a) = 0 with

@ =idla) = —2.
a

For an arbitrary but fixed a € A,, we write ay := a and a, := a.

new CONS:

. Sa, (2, a;) L
enlz) = 4 LAzl 9=0,1, neN
! v Sa,(aj,a;) ’

Proof : Put ¢; :=1/1/Sa,(a;,a;),j =0, 1. Suppose first n > m. On 0A,, f, =1/f,
(€jns Chkm) 2(8g) = CJC‘E<SAG(%aj)fa.(')”_ma S a"")>Ha(Aq)

= cjcSa,(ak, a;) fa(ar)"™™, by the reproducing property of Sy (-, ax)
Since f,(a) = f,(a) = 0, this is zero.

If n = m, the above equals to ¢;¢;Sa, (ak, a;) = |¢;|*Sa,(a;, ;)i u
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Consider again Example 3: the Hardy space on A,, H*(A,)

inner product:

1 27 — 1 2m — .
g mwy =5= | f (V) g(eV=19)dp+ — [ flge¥V™1?)g(gev=1¢)qdg,
T Jo 21 Jo
fﬂ g = HQ(AQ)
For an arbitrary but fixed a € A, we write a¢ := a and a; := a.
Sa, (2, a;)

new CONS: €;,(z):=

fa(z)na J — Oa 15 n € NO

\/SAQ (a’j y Aj )

expression of S,  using the Ahlfors mapping function:

7=0 n=0
[ Sa,(z,0)Sp,(w,a)  Sy,(z,a)
B ( Sa,(a,a) v SAq( ) Zfa
[ Sa,(2,0)Sa,(w,a)  Sa,(2,@)Sa,(w,a) 1 o
; ( Sa,(a, a) i Sa, (@, a) ) 1 — fo(2) fa(w) e

[Bell16] Bell S. R..: The Cauchy Transform, Potential Theory and

Conformal Mapping. 2nd edn, CRC Press, Boca Raton, FL (2016)
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We have obtained the following expressions for the Szeg6 kernels:

For a simply connected domain D > a,

Sp(z,w) Sp(z,a)Sp(w,a) 1 D
2 W)= : , R,uW € 1),
Y Sp(a, a) 1 — ha(2)hg(w)
For an annulus A, > @ with @ = —q/a,
Sa (z,a)Sa (w, Sa,(2,0)S . a 1
Sa, (2, w) = ACLIACIL) + 1q(20) AAi(QL;' ) ,  Z,w € A,
SAQ(G, a) SAQ(G-}G:) 1 — fo(2) fa(w)

They are written as follows.

For a simply connected domain D > a,

SD(Za G)SD(’H), a)

SB(Z,?,U) = SD(Z?w) o = SD(zaw)hu(Z)hu(u})a Z,W € L,

S;)(CL: 05)
For an annulus A, > a with @ = —q/a,
- Sa,(z,a)Ss,(w,a) Sa,(z,a)Sy,(w,a)
Sa,a w) = S N q ’ q ? q ? — i
i, (2, W) A, (2, W) ( 5. (a,0) - 5. G,0)

= Sa, (2, W) fo(2) fa(w), z,w € A,
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For a simply connected domain D 3 a, z, w,

SD(z: G’)SD(?U:' a’)
SD(aa a’)

This is a reproducing kernel for the Hilbert subspace H?(D) := {f € H*(D) : f(a) = 0}.

SP(z,w) := Sp(z,w) — = Sp(z,w)hg(2)he(w).

For an annulus A, 3 a,w, z with @ = —¢/a,

-~ Sa,(2,a)Sa, (w,a) Sy (z,0)Ss, (w,a N
528 (2, ) = Sp, (2,w) — ( AQ(SA )(aAqa() ) i A;(SA )(EA%( )) = S [ wl Al T,

This is a reproducing kernel for the Hilbert subspace
H;a(Ag) = {f € H*(A,) : f(a) = f(@) = 0}.
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For a simply connected domain D > a, z,w, |with the Riemann map h,,

Sp(z,a)Sp(w,a)
Sp(a,a)

This is a reproducing kernel for the Hilbert subspace H2(D) := {f € H*(D) : f(a) = 0}.

Sp(z,w) = Sp(z,w) — = Sp(z,w)he(2)he(w).

For an annulus A, 3 a,w, z with @ = —¢/a, | with the Ahlfors map f,,

wi Su,(2,a)Sa,(w,a)  Sa,(2,0)S4,(w,a) —
SA'Q (z,w) := Sy, (2, w) — ( B, (6, 2) + e (B.5) = Sa,(2,w) fa(2) fo(w).

This is a reproducing kernel for the Hilbert subspace

HZa(Ag) == {f € H*(A,) : f(a) = f(a) = 0}.
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For a simply connected domain D 3 a, z, w,

with the Riemann map h,,

Sp(z,w) = Sp(z,w) —

Sp(z,a)Sp(w,a)

Sp(a,a)

= Sp(z,w)he(2)he(w).

This is a reproducing kernel for the Hilbert subspace H2(D) := {f € H*(D) : f(a) = 0}.

For an annulus A, 3 a,w, z with @ = —q/a,

with the Ahlfors map f,,

ng(z, w) := Sa,(z,w) —

Su,(2,@)Sa, (w, @)

(S’Aq(z,a)S’Aq(w,a) N

SAq (G’: G;)

Su. (@, a)

)

= Sa, (2, w) fa(2) fo(w).

This is a reproducing kernel for the Hilbert subspace

Hg,a(Aq) ={f€ HZ(AQ) : f(a)

= /(@ =0}.

For an annulus A, 5 a,w, z, how about for H2(A,) := {f € H?(A,) : f(a) = 0}7

Sféq(z, w) := Sa,(z,w) —

Su,(z,a)Sa,(w,a)

Sa,(a,a)

= Th
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For a simply connected domain D > a, z, w, |with the Riemann map h,,

Sp(z,a)Sp(w, a)
Sp(a,a)

SYH(z,w) := Sp(z,w) — = Sp(z,w)he(2)he(w).

For an annulus A, 3 a,w, z with @ = —¢/a, | with the Ahlfors map f,,

— SAQ(Zaw)fa(z)fﬂ(w)‘

i Sa,(2,a)Sa,(w,a)  Sa,(z,a)S4,(w,a)
e SA“(Z’w)_( R

For an annulus A, 3 a, w, z, how about for HZ(A,) := {f € H*(A,) : f(a) = 0}?
The answer was found in [MS94].
[MS94] Mccullough, S, Shen, L.C.: On the Szeg6 kernel of an annulus.
Proc. Amer. Math. Soc. 121, 1111-1121 (1994)

Sa,(2,a)Sa, (w,a)
Sa,(a, a)

S5 (2,w) = Sa, (z,w) — — 81, (2, w3 qlal?)hd(2)RI(2),

where h4(z) is a conformal map from A, to D\ {a circular slit}.
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For an annulus A, 3 a,w, z, and with r» > 0, more generally,
[MS94]| Mccullough, S, Shen, L.C.: On the Szegé kernel of an annulus.
Proc. Amer. Math. Soc. 121, 1111-1121 (1994)

SAq (Za a, T)SAQ (w: a; T)

= Su,(z,w;r|al*)hg(2)hi(2),

Sa, (2w T) = S, (2,w;T) —

Sa,(a,a;r)

where hi(z) is a conformal map from A, to D \ {a circular slit}.
Remember that Sy (2, w;r) is the weighted Szeg6 kernel with weight r,

and the original one is given by Sa (z,w) = Sa,(z,w; q).

s

Conformal map h : A, — D\ {a circular slit} is illustrated for ¢ = 1/3 and a = 2/3. The

point a = 2/3 in A, /3 is mapped to the origin. The outer boundary of A,/; (denoted by a

red circle) is mapped to a unit circle (a red circle) making the boundary of . The image

of the inner boundary of A3 (a green circle) makes a circular slit inside of D (denoted by  22/5¢
a green arc)



2. Gaussian Analytic Functions (GAFs), Gaussian Processes (GPs),
and Zero-Point Processes

Let 7 := v/—1.
The Lebesgue measure on C is denoted by m(dz) = dRe zdIm z, z € C.
Complex standard normal random variable (distribution)

( =Re(+iIm( ~ N¢(0,1)

- : : 1 _mes?2 . 1 gz 1 i
& the probability density function: p(z) := —=e~Re2)" x —_=(m=)* — g

| VT VT W
<~ P{(eD)= /p( ym(dz), D CC

]—/f z)m(dz)

In particular, E[¢(]=E[(]=0, E[¢*)]=E[(Re()*+ 2iRe(Im(— (Im()?] = % +0— % =0,
E(¢?] = Bl(ReC)’ + (Im¢)? = 5 + 5 =1
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Consider {(, }nez :
a series of independently and identically distributed (i.i.d.)
complex standard normal random variables
< Cn ~ NC(O, 1), Vn € Z
and (, L G, Vn#m
that is,  B[f(C)g(Gn)] = E[f(¢)|E[g(Cm)] Yn # m

In particular, E[(.(n] = 0nmEl[|Cal?] = Opm, 1, m € Z.
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Examples of Gaussian analytic functions (GAFs):
Example 2’ : H*(DD) : the Hardy space on D.

feH)D) <= f(2)=) caen(z)=) cp?"

n€Ng n=0

This random Taylor series converges Vz € D with probability 1.

Covariance function: for z,w € D,

TS zmwm} Y ST

E| Xp(2)Xp(w)] = E

n=0 m=0

- Z(zw)” _ = Sp(z,w).
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Examples 3’ and 4’ : H>(A,) : the Hardy space on A, with weight r > 0.

c H2(A — - 2697 (2) =
/ r( q) f(z) HGZZC H_Z_OOC \/m

z € A

=3 e

This random Laurent series converges Vz € A, with probability 1.

In particular, by setting r = g,

X, (2) = ng _Z Cn \/1 n qan z €A,
Covariance function: for z,w € A,
E[X, ()X} ()] = i Tqugn(zw)n — S [, 7).
In particular, by setting r = q, S
B, (X0 = 3 s (0" = S 2r0),
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0.0005
0.0000

-0.0005
-0.0010

A sample of the real part of GAF {X,,(2)}.ea,-

Due to bursts near the outer boundary,
all fine structures are smeared out in this picture.
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GAFs Xp(z) =) .7 Cen(2), 2 € D are (centered) Gaussian processes (GPs).
<= For an arbitrary n € N:={1,2,...} and an arbitrary set of points zy,...,2, € D,

(XD(ZI): ‘% %3 XD(Z?L)) ~ N{%(O, Zn):

where %, := (En(zj: Zk))lgj;kgn - (k?{(zj, Zﬁc))lgj,kgn - (k’H)n
with  ky(z,w) = E[Xp(2)Xp(w)], z,w € D.

Xp(z1) 0 | ku(z1,21) ku(z1,22) -+ ku(z1,20)
P, XD(ZQ) N NE 0 ? k’}.{_(ZQ;Zl) k'q.,{(ZQ?ZQ) e k’;{(Zg,Zn)
L XD(Z’n,) | L 0 A | ,{;?{(zna Zl) k?{(zna 22) T k?{(zn: Zn) )

< P(Xp(a1) € dé1, Xp(2) € da, ., Xp(zn) € dés )

1

= i = (€ )

£ :=(61,&,...,&) € D", d€ =[] d¢;
7=1

covariance kernel of the GP = reproducing kernel of the Hilbert space
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Choose one point and write it as z; = aq,

" Xp(a) ] 0, ky(a,a) | kula, z0) -+ kula, z,) |
XD(ZQ) N NE 0 ]{ZH(ZQ? (,L) k’H(ZQ: 22) T k"H(ZQa Zn)
L XD(Z?'L) J 0 k?{(zna (I,) ]{'H(Zn, Zg) A kq{(zﬂ, Zn)

Assume that ky(a,a) > 0.
—> Under the condition Xp(a) =0, (Xp(22),...,Xp(z,)) is again a centered GP

T ‘ ka (25, 21) ku(z,a) |
Xp(22) - 0 Get [ kw(a,zr) ku(a,a)
- ~ Np e 3
XD(ZH) 0 k?{(a: a’)

I 2<j,k<n-

, ]{;H(Z}’LU) k%(zva’)
det [ ku(a,w) ku(a,a) }

k’r’{(a: (I)
k?—t(za G’)k?{(wa CL)
ky(a,a)

with the correlation kernel =

= ky(z,w) — =: k%,(z,w), z,we€D.
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Choose two points and write them as z; = a and z, = b,

" Xola) 7 / 0 ku(a,a) kyl(a,b) ku(a,z3) -+ kyla,z,) \
ngb) { 0 } : [ ki (b,a) Fky(b,b) } [ ky(b,z3) -+ ky(b, 2,)
Xp(zs) | ~N¢ { 0 ] [ k(zs,0) k23, ) ] k(23 23) - K23, 20)

| XD(Zn) | \ 0 | k?{(zna a) k?{(zn: b) kH(zn, 23) i ’ﬂ)’;.,i(zn, Zn__) /

Assume that det { krla,a) Fn(a,b) } > 0.

k'r‘{ (ba (L) k?{ (b b)
—> Under the condition Xp(a) = Xp(b) =0, (Xp(23),...,Xp(2,)) is again a centered GP.

/ [ / k'?{(z.f:zk) k?{(zjﬂa’) k?{(zj:b) \ ) \
¥ det | ky(a,zi) kyla,a) ky(a,b)
[ Xo(z) ‘ e [ 0 ] ku(b,2)  kau(ba) (b, b)
© ’ ku(a,a) ku(a,b)
X (zn) 0 deh l Frglba) Fg(b.b) ]
\ | \ /:ﬂgj,kﬁn s /
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Choose two points and write them as z; = a and 2z, = b,

Under the condition Xp(a) = Xp(b) =0, (Xp(z3),...,Xp(2,)) is again a centered GP.
( [ / kwn(zj,z) kun(zj,a) ky(z;,b) \ [ \
det | kyl(a,zp) kyla,a)  ky(a,b)
Xp(zs) o 0 k(b zi)  Kknu(ba)  ku(b,b)
N2 5 U, o] ool
n(a,a) kyla,
i ! - [ ky(b,a)  ky(b,b) ]
\ 2 \ )353‘,&:@. - )

Moreover, if we assume that b = @ and hence k#(a,b) = ky(b,a) = 0, then
ku(z,w) ku(z,a) ky(z,q)

det | ky(a,w) ky(a,a) 0
k'H (a* 'LU) 0 k?‘f (a a)

it [ ky(a,a) 0 ]

0 k(38

b, B (0,0) k(e @Dz
— Bl ) — @)\ — 5Bl w). mwE D
ulzw) ( t@wa) T k(@) wlaw), zwe
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the covariance kernel of GAF under Xp(a) =0
<= the reproducing kernel of the conditional Hilbert space H*
’{7?.((2:, w) k?{(za a’)
ky(a,w) ky(a,a) i ) — ky(z,a)ky(w,a)
ky(a,a) ku(a,a)

det

=: k3,(2,w), z,w€D

the covariance kernel of GAF under Xp(a) = Xp(a) =0

<= the reproducing kernel of the conditional Hilbert space H**
]{?;L(_(Z,'W) k?{(za a’) ]{'?.,{(Z,a)
det | ky(a,w) ky(a,a) 0
k'H (aa w) 0 k'H (a: a)
ky(a,a) 0
0 ky(a,a)

ka2, a)ku(w,a) | wz;akﬂ‘(u_),a‘))

:k?{(zafw)_ ( ~
e k?{(a? CL) k?’},j(@, a’)

—~

=: k3;*(z,w), z,w€D
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3. Main Results: Zero-Point Processes of GAFs

We study a zero set of GAF {Xp(2)}.ep, which is regarded as a point process on D.

It is denoted by a nonnegative-integer-valued Radon measure,

ZXD(') = Z 63(')?

zeD:Xp(z)=0

which we simply call a zero-point process of the GAF.
Zero-point processes of GAFs have been extensively studied in quantum and statistical
physics as solvable models of quantum chaotic systems and interacting particle systems.
e.g., Bogomolny-Bohigas-Lebceuf (1992), Hannay (1996), Forrester (2010)
Many important characterizations of their probability laws have been reported
in probability theory
e.g., Edelman-Kostlan (1995), Bleher-Shiffman-Zelditch (2000), Sodin—Tsirelson (2004),
Peres—Virag (2005), Shirai (2012), Matsumoto—Shirai (2013)
The following monograph is very useful:
[HKPV09] Hough, J. B., Krishnapur, M., Peres, Y., Virag, B.:
Zeros of Gaussian Analytic Functions and Determinantal Point Processes.
University Lecture Series, Vol. 51, Amer. Math. Soc., Providence, RI (2009)
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The conﬁguration space of zero-point process Zx, (-) is given by

Conf(D { ZJZJ z; € D, £(A) < oo for all bounded set A C D}.

Let B.(D) be the set of all bounded measurable complex functions on D of compact support.

For £ € Conf(D) and ¢ € B.(D), we set | (£, ¢) := /D o(2) €(dz) = Z ?(2;5)-

For a point process Zx,,, if there exists a non-negative measurable function p(zll such that
Xp

ZXpaﬁb]—/¢5 ()62, (2)m(dz)/x Vo € B(D),

pgi (2) is called the first correlation function of Zx, with respect to the measure m/.
D

By definition, pg_i,D(z) gives the density of point at z € D with respect to m(dz)/x.
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Forn=2,3,..., from £ € Conf(D) we define &, := Z 0z *++0

J1 Zjn ?

jls"'!jn J!\.#Jl‘*k?&e

and denote the n-product measure of m by m®"(dz; - - - dz,) = H m(dz;).
j=1

For a point process Zx,,

if there exists a symmetric, non-negative measurable function p(;) on D" such that

XD
E[((ZXD)m gb)} = Qb(zlﬂ iy Zﬂ)p(;:-D (Zla iy zn)m(@n(dzl T dzﬂ-)/ﬂ.n ng € BC(Dn)v
D
we say pgiD (21,...,2y) is the n-th correlation function of Zx, with respect to m/x.
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In order to describe our main theorem, we introduce some notations and functions.
Determinant and permanent are defined for an n x n matrix M = (m;x)1<jk<n as

det M = det [mjd = Z Sgn(U)Hmﬂa(ﬁ)a
=1

1<5,k<n
0'6671.

per M = per [mj = Z Hm&y(e);

1<3,k<n oe6, I—1
where G,, denotes the symmetric group of order n.

We introduce the following notation.

perdet M = perdet|m,i| := per M det M,
1<3,k<n

that is, perdet M denotes per M multiplied by det M.
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Assume that p € C is a fixed number such that 0 < |p| < 1.

We use the following standard notations (the p-Pochhammer symbols),

n—1 o'e) n
(@;p)n =[] (1= ap™), (@:P) == [ (1 —ap™), (a1, ..., n;P)sc == | [ (a5 P)x-
m=0 m=0 =1

The theta function with argument z and nome p is defined by

0(2;p) := (2,0/2;P)co-

T

We often use the shorthand notation: (z,...,z2,;p) = H 0(z5;p).
g=1

In the following, we only consider the case in which p = ¢*, and set |0(z) := 0(z; ¢*).

We will use the following theta-function representations of the Szegd kernel;

o0

. z,w € Ay, 7 > 0 with g := (¢°;¢%)e0 = H(l — ¢,

n=1

¢30(—r=w)
O(—r, zw)

SAQ(Z!w; T) -

and the conformal map of Mccullough—Shen;

q — Q(G’_/Z) q’ — qu)
hllz) =2 0@) hi(a) 3al?)’ z,a € A,
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As a main theorem, here we give a result for the zero-point process Zyr of the GAF
q

associated with the weighted Szeg6 kernel Sy (-,-;7).

We will show the results for other processes Z Xa, and Zy, are reduced from this main result.

Theorem 3.1 Consider the zero-point process Zyr on A, with » > 0. Then, it is a
b
permanental-determinantal point process (PDPP) in the sense that it has correlation

functions { pgir }nen given by
g

P(zn; (215000, 2p) = T 1‘2[(;:)|2m|4) perdet [SAQ (Zj, Zk;T H ‘Z£|2)]

Ag 1<5,k<n —1

for every n € N and z,...,2, € A, with respect to m/.

Due to the determinantal factor in perdet, PDPP is simple, i.e., no multiple point.

n)

It is verified that p%xr (21,...,20) > 0,Vn € N, 21,..., 2, € A, by this explicit expression,

q

which implies that this PDPP has an infinite number of points;| Zxr (A,) = 0 as.
q

In our paper (arXiv:2008.04177), we proved that Zxr is essentially PDPP; that is,

this cannot be reduced to any permanental point process nor determinantal point process.
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The density of zeros on A, with respect to m/m is given by

W ()= 2 2 _ qof(=r, —r|2]")
X O(—rlz[*) O(—r|2[2 |2[?)?’

depends only on |z| € (¢,1), this PDPP is rotationally invariant.

Sa, (2, z;7|2[*) z € A,

)
Since p Zxy

The density shows divergence both at the inner and outer boundaries as
§ 4

q
— |54y,
pgir (2) ~ < (2] 1 7) (This is independent of r.)

ﬁ:\, l'_'f

. |z| 1 1.
[ (1 —23)*
density
35
30
25

20

i\

-1.0 -05 0.5 1.0

r

Density of zeros Zxs when ¢ =1 /6 39/50



density
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25
20
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We consider a finite-series approximation of the GAF X, :

n

2
XAF%N)(Z) = Z G
n=—N 1 + q2n+l

A sample of zeros in the case ¢ = 1/2 and N = 500 is shown. 2N = 1000 zeros are plotted.
We see a lot of zeros near the inner and the outer boundaries of A,. Due to the finiteness of
N; N < oo, we have outliers (the zeros inside of the inner circle and outside of the outer
circle), which shall vanish in the limit N — oc. 40/50



In the limit ¢ — 0, Theorem 3.1 is much simplified by the formula 1111{1] 0(z;4°) =1 — 2.
q—

Corollary 3.2 Assume that » > 0. In the limit ¢ — 0, ZX;;( 1s reduced to ZX£X on
D*:={z2€ C:0 < |z| < 1}, which is a PDPP with the correlation functions

n
B (B8 = - perdet [SDX (zs,zk,r 2 )]
XD 14 r [T 2wl 1<ibsn ! g' |
for every n € N and zy,..., 2, € D* with respect to m/7. Here
1+ rzw
Spx (2, w) = z,w € D*.

(1+7)(1—2w)

z € D*.

1 1 z|*
In particular, the density of zeros on D is given by p(zl) (2) = (1(+ +| T’)Q()Z(_; 7] || |l)2 :
r|z — |z

XT
D X

10

-1.0 -0.5 05 1.0

Density of zeros Zxr with r =0 (blue), r =1 (orange), r = 5 (green), and 7 = 20 (red) 41/50




If we take the further limit » — 0, we obtain the Szeg6 kernel of .
14+ rzw 1
_— S =
1+ 2w b(2,w)
Since the matrix (Sp(z;, 2x) ' )1<jk<n = (1 — 2;Zk )1<jk<n has rank 2, the following equality
called Borchardt’s identity holds,
1
= det [ } :

(1 — 25Zx)?

perdet [ _}
1<j,k<n 1 — ZjZk 1<5,k<n

This implies that the PDPP is reduced to a determinantal point process (DPP).

Moreover, by the relation

1

oo 0 =

= Kp(z,w), z,weD,

we see that the r — 0 limit of 2 X7, is the DPP Zx, on D whose correlation functions

with respect to m/m are given by

Pgﬁﬁ(fzh ) = det [Kp(z,2)], nEeN, 2.,z €D.
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This is the beautiful result by Peres and Virag (2005).
[PVO05] Peres, Y., Virag, B.: Zeros of the i.i.d. Gaussian power series.
A conformally invariant determinantal process. Acta Math. 194, 1-35 (2005)

Corollary 3.3 (Peres—Virag (2005)) Consider a GAF on D defined by Xp(z) := E Caz™,
n=>0
1

—_

— 2W
kernel of D (that is, the reproducing kernel of the Hardy space H?*(ID).) The zero-point

process Zx, of {Xp(2)}.ep is a determinantal point process (DPP) with the correla-

This is a GP with the covariance kernel Sp(z,w) = which is equal to the Szegd

tion kernel Kp(z,w) = which is equal to the Bergman kernel of D (that is, the

(1 —zw)?’
reproducing kernel of the Bergman space L3(D)).
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The asymptotics shows that the density of zeros of Zxr diverges at the inner boundary
'q
{z:|z| = q} for each ¢ > 0, while the density of Zxr s finite at the origin.

Therefore infinitely many zeros near the inner boundary seem to vanish in
the limit g — 0. This is why we write D* instead of DD for the limit domain of A,.

Indeed, in the vague topology, with which we equip a configuration space, we cannot see

configurations outside each compact set, hence infinitely many zeros are not observed

on each compact set in D* (not D) for any sufficiently small g > 0.
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As another corollary of Theorem 3.1, we can also obtain the following.

Corollary 3.4 Consider the pair-zero point process of the GAF X, 6 on A,, which is
denoted by Z¥". This is a PDPP in the sense that the pair-point correlation functions are

‘\'1[‘:

given as follows,

Note that Sy (2;,%2;) = Sa,(%j,2;)) = 0,7 = 1,2,...,n. Then X, (2;) and X, (2;) are
uncorrelated. In the above we put zeros both on these independent points.
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4. A Sketch of Proof for Theorem 3.1

e We recall a general formula for correlation functions of zero-point process of a GAF,
which is found in [PVO05].

e But here we use a slightly different expression given by Proposition 6.1 of [Shil2].

Proposition 4.1 The correlation functions of Zx, of the GAF X, on D C C with covari-
ance kernel Sp(z,w) are given by

(n)  Perigj<n [(838583""’2’”)(;%z;\,)}
pZXD (Zla iy zn.) =
deti<;jr<n [SD(Z;? 3&)}

) ﬂ’EN: Zla"'ﬂzﬂer

with respect to m/m, whenever 1 <de;lt< [Sp(2j, 21)] > 0.
<j.k<n

[Shil12]| Shirai, T.: Limit theorems for random analytic functions and their zeros.
In: Functions in Number Theory and Their Probabilistic Aspects — Kyoto 2010,
RIMS Kokyiroku Bessatsu 34, 335-359 (2012)
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dyj(2)
o Let ~i(z) = ’y?zg}? Hh 1, #2(2) = el € A,

)1 -ondition zegO ke with zeros at zq,... z,, we have
Then, for the conditior dlS eg0 kernel with zeros at z. ... z,, we have

Srfnl, wir) = Sk, (Z s TH\ZH )’T 2)m(w), 2w,z 20 € Ag.
=1

This formula gives (azamSgt"”’z”)(zj?zk; ) = Sa, (z;.,zk,frH| 2y ) zj)’}fn( g 1,

e Therefore, Shirai’s proposition gives now

_ Pericjk<n [SAq (255 2k TH?:l |Zf|2)} Hfﬁﬂ "}‘g’(zm)‘g

| with
Ag detlgj‘kgn [SAQ (Zj} 2k 7)]

2

T 1 H\( I #Go)ns )| H\( 11 ngéfgzjjj))e(liilz>

j=1 j=1  1<k<n,k#j = 1<k<n,k#j
Qn Hl<}<k<n g (Zk/zj) H1<3 '<k!'<n 2 0(zj [ 21) ‘
H 0(z;7x)
_ qé”’ (H1§j<k§n |zk:9(zj/zk_,zj/zk)) |
er_1 11— 60(257%)
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e The following identity is known as an elliptic extension of Cauchy’s evaluation
of determinant due to Frobenius,

det

1<5,k<n

[ G(t;v}aﬁ) ] B Q(t H::l 3?;\';0,57) HlSleﬂS'”» mkakg(-rj/wk:a aj/a‘k)
O(t, zja) 0(t) [Tjmi [Tz O(zjar)

e Using the expression of Sy (-,-;7) by the theta functions, we have

B | P |2 |%0(2/ 2k, %5/ Zx) 6(—s)

2n SJI<ksn J J

q n n = - n det SA:; (Z"a 2k S) ) Vs > 0.
" [1j=1 TTx=1 0(2%) 0(—5 L=y |2]?) 1< kn | ! )

Then

n , : o(—r
jlj[l h’g (2})' = 9(—?‘ 1—([;11)

det [Sa,(2j,2k;7)] det [SA{I(zj,zk;rﬁjzﬂ)}.
(=1

zg|*) 1< k<n 1<j,k<n

Applying the above to

Pzer (Z15000y2n) =
Agq detlgj‘kgn [SAQ (ZJ, Rk, T)]

b

the correlation functions in Theorem 3.1 are obtained. 48/50



S. And Geometry?

e As shown by

( q4
(1 (., —rll) |- Ve
= \
szgq (Z) 9(_?0'2,‘2’ ‘Z|2)2 1 |z| T 1
(1= 2%)* |

the asymptotics of the density of zeros szl,)(-r (2) ~ (1—|z|*)~* with respect to m(dz) /=
A

in the vicinity of the outer boundary of Aqq can be identified with the metric in the
hyperbolic plane called the Poincaré disk model.

e The zero-point process Zx, of Peres and Virag can be regarded as a uniform DPP
on the Poincaré disk model.

e Are there meaningful geometrical spaces in which the present zero-point
processes Zxr , 2", and Zxr seem to be uniform?
Lg Aq

49/50



Thank you very much
for your attention.
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Appendix: On Physical Realization of Random Polynomials
and Observation of their Zeros

Physicists have realized the ideal Bose gas confined in a harmonic potential in 3D.

Let w= the oscillation frequency in the xy plane, w.= that along the z-axis

1 : ¥ =
for the harmonic potential §mw2(a:2 +y°) + Emwjzz.

Set in low temperatures (kg7 < hw,) so that the z degree of freedom is frozen

— the gas is kinetically two dimensional

Consider the thermal equilibrium | in the frame rotating at frequency {2 along z-axis.

(a) Fiber output

Lens

S~
B Mask =

Tung, S. et al.: Phys. Rev. Lett.
97, 240402 (2006)
Fig. 1
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2
1 ¥
Hamiltonian (energy operator) : |H = Qp_ e §‘mw2(:1:2 + %) — QL,,
m

p = momentum operator, L.= z-component of the angular momentum operator

h
A system of common-eigenfunctions of L, and H, a:=14/—
mw

j k
B:.(z, ) oc &H)/22 (a% +i(%)9 (% - zé%) e~ @Hy?)/2a
j € Ng, k= Landau level € N,
the eigenvalue of H = E;; := hw + h(w — Q)j + A(w + Q)k, the ev. of L, = h(j — k)
fast rotation: Q Sw <= A(w— Q) K€ hw < h(w + Q)
If kgT and p (chemical potential) < Aw,
then, the state can be actually described ¢;; with k = 0 (lowest-Landau-level) only.

djalo) = e (L g LY e o gy
AE I

sy k=2
Afalion, A. et al. : Phys. Rev. A72,

s3] — k=1 023611 (2005)
Fig. 2
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LLL (Lowest-Landau-Level) state (z :=x + iy)
Y(z,y) = a linear combination of the ¢;o’s (¢;0(z) Zem121/2e%)

= e—|z|2/2”'2P(2:) (P(z):=a polynomial of z)
Fi I N
— g~ l2I*/20% chz” (thermal noise = c,, are i.i.d. Gaussian r.v.’s)

n=>0
N

0'¢ e_|3|2/2&.2 H(z . 2{7)

(=1
The phase of ¥ (x,y) changes by 27 along a closed contour encircling z.

a zero of P(z) <= a location of a single-charged, positive vortex

zero-point process of P(z) <= vertex distribution in the 2D Bose gas in fast rotation

L0, B B G B A S . B % I RSN S N S (LN N G N
-

10} :
; (@) . L. 1 Aftalion, A. et al. : Phys. Rev. A72,
: : 023611 (2005) : Fig.1
oF o :
A 3 (a) Vortex locations
1 ] (b) atomic density profile
10f :
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We can find the following papers ...

PHYSICAL REVIEW A 86, 013629 (2012)

Quantized supercurrent decay in an annular Bose-Einstein condensate

Stuart Moulder, Scott Beattie, Robert P. Smith, Naaman Tammuz, and Zoran Hadzibabic

(a) A Y
= 30um 25 b ke £ gkl

)
Iy

L/N

e . Vortices

LIN, v, v,

PHYSICAL REVIEW A 91, 023607 (2015)

Vortex excitation in a stirred toroidal Bose-Einstein condensate
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