物理1 期末テスト(2011年度)

教科書持ち込み不可.ノートのみ持ち込み可.裏も使って良いから,全解答を解答用紙1枚に収めよ.

次の8問の中から(裏面あり)4問を選択して解答せよ.

問題 1. 粘性抵抗を受けて落下する物体の落下速度 v は,運動方程式 $m\frac{dv}{dt}=mg-av$ に従う.ただしここで,m は物体の質量,g は重力加速度,a は正の定数である.時刻 t=0 での,物体の初速度を $v_0>0$ とする.以下の設問に答えなさい.

- (1) 終端速度 v_{∞} を求めなさい.
- (2) $v_0 > v_\infty$ の場合に,運動方程式を解いて v(t) を求めなさい.
- (3) 上で求めた v(t) を , t の関数としてグラフに描きなさい .

問題 2. ばね定数 k のばねによって振動する質量 m の質点の運動方程式は,質点の平衡点(力のつりあいの位置)からの変位を x とすると,次式で与えられる.

$$m\frac{d^2x}{dt^2} = -kx. (1)$$

以下では , $\omega = \sqrt{\frac{k}{m}}$ とする .

- (1) $x_1 = \cos(\omega t)$ とする.これが(1) 式を満たすことを示しなさい.
- (2) $x_2 = \sin(\omega t)$ とする.これも (1) 式を満たすことを示しなさい.
- (3) a と b を任意の定数とする.このとき, $y=ax_1+bx_2$ も (1) 式の解であることを証明しなさい.
- (4) 初期変位(t=0 のときの x の値)を x_0 , 初速度を v_0 とする.この初期条件を満たすには,a と b をそれぞれどのように与えればよいか, x_0,v_0,ω を用いて答えなさい.

問題 3. ばね定数 k のばねによって振動する質量 m の質点の運動方程式は,質点の平衡点(力のつりあいの位置)からの変位を x とすると,次式で与えられる.

$$m\frac{d^2x}{dt^2} = -kx. (2)$$

- (1) 周期 T を k と m を用いて表しなさい.
- (2) 振幅を A, 初期位相を $\theta_0,\,\omega=\sqrt{\frac{k}{m}}$ とすると , (2) 式の解は

$$x(t) = A\cos(\omega t + \theta_0) \tag{3}$$

で与えられる.実際に(3)式を(2)式に代入して,これが解であることを示しなさい.

(3) 初期変位 (t=0 での x の値) を x_0 , 初速度を v_0 とする.これらの値を用いて, $\tan\theta_0$ を表しなさい.

問題 4. 2 つのベクトル $\vec{A}=(A_1,A_2,A_3)$ と $\vec{B}=(B_1,B_2,B_3)$ の外積 $\vec{A} \times \vec{B}$ を考える.

- (1) $\vec{A} \times \vec{B}$ はベクトルである.その x,y,z 成分 $(\vec{A} \times \vec{B})_x, (\vec{A} \times \vec{B})_y, (\vec{A} \times \vec{B})_z$ をそれぞれ, \vec{A} の成分と \vec{B} の成分を用いて表しなさい.
- (2) 上の問(1)で答えた結果を導出しなさい.

問題 5. 原点を定めて,質量 m の質点の位置ベクトルを $\vec{r}=(x,y,z)$,速度ベクトルを $\vec{v}=(v_x,v_y,v_z)$,運動量ベクトルを $\vec{p}=(p_x,p_y,p_z)=(mv_x,mv_y,mv_z)$ とする.このとき,原点のまわりの角運動量ベクトルはベクトルの外積を用いて $\vec{L}=\vec{r}\times\vec{p}$ で与えられる.

- (1) 角運動量ベクトル \vec{L} の x 成分 L_x,y 成分 L_y,z 成分 L_z をそれぞれ x,y,z,v_x,v_y,v_z,m を用いて表しなさい .
- (2) 力のモーメント $\vec{N}=\vec{r}\times\vec{F}$ が質点に働くと,角運動量ベクトルは

$$\frac{d}{dt}\vec{L} = \vec{N} \tag{4}$$

に従って時間変化することを , ニュートンの運動方程式から導きなさ \mathbf{N} . ((4) 式の x,y,z の 3 つの成分について , それぞれ導きなさ \mathbf{N} .)

(3) 力 \vec{F} が質点の位置ベクトル \vec{r} と平行あるいは反平行の場合には , 角運動量ベクトル \vec{L} は一定であることを証明しなさい .

問題 6.

(1) 半径 a の球の体積は, 3 重積分

$$V = \int_0^a dr \int_0^\pi d\theta \int_0^{2\pi} d\varphi \, r^2 \sin\theta$$

で与えられることを説明しなさい.

- (2) 実際に上の 3 重積分を計算しなさい.
- 問題 7. 慣性質量と慣性モーメントとは何か. 数式と言葉を使って, なるべく分かりやすく説明しなさい.
- 問題 8. 流体力学の法則について,以下の設問に答えなさい.
- (1) ベルヌーイの法則とは何か,数式を用いて答えなさい.
- (2) ベルヌーイの法則の応用例を一つあげて,詳しく説明しなさい.