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1. Vicious Walker Model

*Let ({S(t)};_o,,_.P") be the N-dimensional Markov chain starting from

X = (Xg, Xp, ---Xy), such that the coordinates S;(t) ,]=1,2,...,N, are independent

simple symmetric random walk on Z..
* Take the starting point x from the set
7 = {x = (X, Xg5ees Xy ) € QL)Y 1 X, < X, <. < Xy, }
» With a constant | > 0 we impose the noncolliding condition up to time T ;

S,(1) < S, (1) <.....< S (1), t=12,....,T.

* We denote by Q? the conditional probability of P™ under this noncolliding
condition.

Michael Fisher called ({S(t)}t=0,1,2,3... ) Q? )
a vicious walker model in his Boltzmann medal lecture.
(M. E. Fisher, J. Statistical Physics 34 (1984) 667-729.)




« We will assume that Sj(O)ZZ(j —1), 1< J<N.

 Each realization of vicious walk is represented by an N-tuple of

nonintersecting lattice paths on the 1+1 spatio-temporal plane, Z. X {0,1,2,...,T}.

An example is given by Figure 1 on the case N=4 and T=6.




Physical Motivations to Study Vicious Walker Models

*As a model of Wetting or Melting Transitions
(Fisher (J. Statistical Physics 1984))

*As a model of Commensurate-Incommensurate Transitions
(Huse and Fisher (Physical Review B 1984))

)

\%\. \%




*As a model of Directed Polymer Networks
(de Gennes (J. Chemical Phys. 1968),
Essam and Guttmann (Phys. Review E 1995))

(a) polymer with star topology (b) polymer with watermelon topology
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2. Young Diagrams, Young Tableaux

and Schur Polynomials
A bijection between vicious walks and semistandard Young tableaux (SSYT).
[ Guttmann, Owczarek and Viennot, J. Physics A (1998),
Krattenthaler, Guttmann and Viennot, J. Physics A (2000) ]

T “}'1 V2 V3 Vs ( 1 ) Let

6 6 6 6

K Lj: the number of leftward steps

4 2 2 ) among T steps of the j-th walker, for j=1,2,...., N.
? © Draw a collection of boxes with N columns,
2 @

] in which the number of boxes in the j-th column is Lj :

0 1 2 3 4 5 6 7 8 9 10 11 [e.g., L=(L1,L2,L3,L4)=(3,3,2,1)]

(2) For each walker, we label each leftward step by the
416 integer 1,2,...,T, which is the time when that
leftward step is done.

(3) Then for the j-th column of the collections of boxes,
fill the boxes by the labels of leftward steps of the
j-th walker, from the top to the bottom, j =1, 2,..., N.

(a) (b)



Remark 1

- "1’3@ e NG L ; = the number of leftward steps
5 among T steps of the j-th walker, for j=1,2,...., N.
) ) )
©) [ e'g's L:(L]_a L2a L3a L4):(3333291) ]
© © The noncolliding condition of vicious walkers
= guarantees the equalities
SEER A o L>L >...>L,. (2.1
Young diagram © Let
Il A, = the number of boxes in the K - th row.
416 Then the equalities (2.1) imply
WA 2.2 (2.2)
[e.g., h=(1,4,4)=(432) ]
(a)

*The collections of boxes with conditions concerning the numbers of boxes in rows (2.2)

(and in columns (2.1)) are called Young diagram (YD).
*The total number of rows in the YD is called the length | of YD.

[ e.g., length|=3. In general, length 1 =0,1,2,..., T ]




Remark 2
Let

R X R T (], K)= the integer in the box located
= g in the J-th row and k-th column,
© © The noncolliding condition of vicious walkers
guarantees the equalities
J AR S A A A TGO <T(+1K) strictly increasing
Young Tableau in each column,
. =
416
4146 weakly increasing
516 T(LKST(}L,k+1) .
(LK)=T(), ) in each row.
(a) (b)

Young diagram with integers T=(T(], k))
satisfying the above ordering of T(J, k)’s
are called Semi-Standard Young Tableaux (SSYT).




* YD with ,11( boxes in the k-th row, k=1,2, ..., |, is
said to be the YD of shape A = (//11,/12,...,/1,).

* Let L,= the number of boxes in the jJ-th column.

N N
The YD with the shape L =(L,, L,, ..., Ly) is regarded as \\\ )
the conjugate of the YD with the shape L = (4, 4,,..., 4,). N
and denoted by N N b N

L=XA or A=L. X R

* As shown in Figure 3, they are mirror images with

respect to the diagonal line.

» The sequence of integers in the weakly decreasing order
(representing the number of boxes in rows of YD)

A=A, A4, 4), AN, L24 =224
T
is regarded as a partition of an integer n = Z A

k=1

» The number of parts | is equal to or less than T .
We mtroduce a set of T variables z=(z,, z,, ..., Z).




e For each SSYT, T=( T(j.k) ),
define a monomial

T _
Z = H 21 (j.k)
(1.k)
T
_ 7 # of times that the integer m occursin T
o | | m

m=1

 ¢.g., for the SSYS shown in Figure 2 (b),
T
Z =71, XL XL, XL,
XLy XLy XL
XLs XL

=2,1,2,2.2;

10

213(4]6
4146
5106

(b)
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* Notice that for one YD with a given
shape A, there are different ways of filling
b i " 5 boxes with integers to make SSYT.

5 g 2  For each YD with shape A , we define a
polynomial of z = (z,, Z,, ..., Z7)

y by summing the monomials over all SSYT

4 4 4 defined on that YD:

Q S, (Z,,2y00y27) = > 7

Q T:all SSYT with the same shape A

6

(a) (b)

This polynomial is called the Schur Function indexed by }, (the partition/YD with shape)

e shape of YD <> the final positions of vicious walkers at t = T.
* variety of SSYT ona YD <> variety of different vicious walks
with the same final positions
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3. Enumeration of Vicious Walks 12

V3

with Fixed Final Positions

Yy

6

=)

—_— [ fad - thl o

 There 1s a simple relation between

the number of leftward steps Lj , 1=1,2,..., N,

Q and the final positions y;, j=1,2,...,N, as
L=(T-yp2+(j-1), j=1,2,...,N,
3 6 or equivalently
s y=T-2L+2(G-1), j=1,2,.,N.
6
y < L and A = L (conjugate)

* set of all vicious walk
from S(0)=(2(j-1)),j=1,.,.N,to S(T)=y

* one realization of vicious walk
from S(0)=(2(]-1)),j=1,..N,to S(T)=y

* final positions Y of vicious walkers

bijections

<) YD with the shape ),
“ one SSYT T:( T (j, k) )

with the shape A

<mmd) , Schur function

S, (2,,2,,...,Z7)
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Definition n |
Fory, <y,<...<Yy,, define the number e R
My 7 (y) = total number of distinct vicious walks 4 NI i
of N walkers from the 1nitial positions e
5(0)=2¢-1), j=1.2,...,N
to the final positions A

S M=y, i=1,2,....N.

The above bijection between vicious walks and Schur functions
gives the following identity.

5 6

7

8

9 10 11

For L=(Ly, Ly ..., Ly) = ((T-y)2+(j 1)), set A=L,
Then

Myr(y)=58,(2,25,....,21)

Z,=1y=..=I7=1




Jacobi-Trudi Formula

A +T =K
detlsj,ksT (ij )

detlsj,ksT (ZJT_k ) ,

S,(2,,2,,...,2;) =

14

Vandermond determinant

1 detlsj,ksT (ZJT_k): H(Zk _Zj)-

1< j<k<T

M N,T (Y) = lirnq—>1 Sx (19 qa qza---a qT_l)
det,_ s <q<j—1)uk +T—k>)

(J-1)(T-k)
detlgj,kg (q )

.
(m-1)4, Ai=Atk=]
= lim q; m 4 :
q—1 k—j 1

1< j<k<T g o

A=A +K—]

=lim__,

-1

1< j<k<T k'_'J

Remark: This is nothing but the dimension of the irreducible representation R

with the highest weight A of the unitary group U(T)



Jacobi-Trudi formula
$,(21,2y,., 27 ) =det ;o [ezk+(j_k)(21» Zy,-ees Z7)]-

By definition of elementary symmetric polynomials

ll[(1+zjg)ziek(zl,zz,...,zT)gk = ifallzj:1,then(1+§)T=iU;j§k,

: 3

Since A=L and L =(T-y,)/2+(j-1),

T
thatis, e, (LL...,l)= [kj (binomial coefficient)

.
MN’T(Y):detl<j’k<N[ Z+i-k
k —
det | ! _
=dc o ez .
S L+ k)
det | !
=Jc o ez . .
ST 205 -D-y)/2




T i1 N NG G
M7 (¥)=det,.; o [ . ]
T2 -D-y)/2 T :
2 d
2 ©
Since > x
0 1 2 3 - 5 6 4 8 9 10 11
[ ! j th ber of ible single path th tio-t 1pl
) = nC NnuMDCT O POSSIDIC SINglc patns on tne Spatio - icmporal planc
T+2(j-D=y,)/2

from the position 2( j —1) at the initial timet =0
to the position Y, at the final timet =T,

this expression of binomial-coefficient determinant

is regarded as a special case of

Karlin-McGregor formula known in probability theory, and

Lindstrom-Gessel-Viennot formula known in combinatorics theory.

16



4. Enumeration of Vicious Walks
with All Possible Final Positions

17

TR G G Definition

TG My 1= total number of distinct vicious walks
N : € of N walkers from the initial positions

i Q Si(0)=2(G-1), j=1,2,...,N

T 2 to any possible final positions at time T

8 9 10 11

MN,T = ZMN,T(y)

YY1 <Y2 <. <Yn

_ Z H /Ij—lk+k—j

MN>>2,>. >0 >0 1< j<k<T K- J 1< j<k<T J+ k-1

N+ j+k-1
— H _

Asymptotics of the Survival Probability of Vicious Walkers
— M N,T YN . 1
Pur = SN =T with :ZN(N—I).

[Fisher (1984), Guttmann et al. (1998), Krattenthaler (2000)]
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Summation Formula

A=A +k=] N+ j+k-1
2 ! - 11 jrk-1

MNSA >, > 20 20 1< j<k<T — 1< j<k<T

L)

This 1s obtained by g — 1 limit of any of the following two equalities,

(N+2i-1)/2

1—
(2i-1)/2 H :

—( 1< j<k<T 1- q
(MacMahon's conjecture)

N+ j+k-1

j+k—1

. T 1-q
(2T 1)/2 (2T 3)/2 1/2

N+ j+k—1

S fadng)- [T

(Bender - Knuth's conjecture)
MN>A >, > > A0 >0 1< j<k<T 1- g

j+k—1



More general summation formula is given in the textbook of Macdonald

-1 N+2T -]
. det 1<| J<T(ZJ Zi ' J)
> 8,(2),2y00s ;) = y —

AN >0, >3 A >0 €ligi j<r (z; —z7 )

Remark N
WNZAZA > 24 >0 2/7_ —
0 / DU
GH%%.

{YD with the length of the first row A4, < N} T UX

and with the number of parts /(A) <T Z
)

{YD includedin an N xT rectangle: A NT}

19



S. Diffusion Scaling Limit

e Remember that ({S(t)},_,,, ,Q") denotes the vicious walk
with the noncolliding condition up to time T ; S, (t) <S, (1) <...< S (), t=0,1,2,...,T.

eForT >0, xeZ" , weconsider probability measures

1 :
i ()=Qr (E S(L*t) e. j , L >1, on the space of continuous paths C([0,T]— R"),

where S(t) 1s here considered to be the interpolation of the random walk S(t),t =0,1,2,....
elet R = {x eR" 1 X <X, <..<X, } (Weyl chamber of type A ).

¢ By vietue of the Karlin - McGregor formula,

1 X, =¥’
fN (Lyl|x)= detlsj,ksN I:\/Tﬂ't eXp{_JT

= the transition density of the absorbing Brownian motionin R"
e The probability that the Brownian motion started at x e R does not hit the boundary
of R" up to time t > 0 is given by

NN (t,X) — INdy fN (tay | X) :

20



Theorem 1. Forany fixedxeZ! andT >0,as L — o, 4, (.)converges weakly to

the law of the temporally inhomogeneous diffusion process
X(t) = (X, (1), X, (D),..., Xy (1)), te[0,T],
with the transition probability density

I<i<j<N

2
gN,T(O,O;t,y)=C><eXp{—% } [y —yON (T -t,y),

fyt=s,y [ x)N (T -t,y)
N, (T =s,x)

gN,T (Sax;tay) =

b

N N
for0<s<t<T,x,y e R}, where0=(0,0,..0), c=2""?T "2/ TTr(j/2), |y[=>yi|
j=1

j=I

21



Next we consider the case that the noncolliding time-period T=TL goes to infinity.

22

Corollary 2.
(1) Let T, be an increasing function of L with T, — coas L — .

For any fixedx e Z" andT >0,as L — oo, 1 (.) converges weakly to

the law of the temporally homogeneous diffusion process

Y(t) = (Y, (1),Y,(1),....,Y (1), te[0,00),
with the transition probability density

2
pN (anata y) = C' X CXp{_% }hN (y)z,

(S LY) =— —fy -5,y [0 hyG) with hy®)= []0x~x)

N (X) 1<j<k<N

N
for0<s<t<T,x,yeR", wherec'=(27) "t ™" /HF(j).
j=1

(i1) The diffusion process Y(t) solves the equations of Dyson's Brownian motion model :

dY,(t)=dB,()+ >’ 1 dt, te[0,0), i=12,.., N,

I<j<N, j=i Yi (t)_Yj (t)

where {B.(t)}", denote independent standard Brownian motions.
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REMARKS: When all the particles are starting from the origin 0,
A
{

Strong Repulsive Interactions

>
O X l
1 2

N 2
0,0;t,y) oc —eyk/zt}x =Y
py (0,0;t,y) IK_H o []o-y)

I<i<j<N

Product of Independent Gaussian Distributions

AS |yj _yi |_) 09 pN(anatay)_)O )

The Process Y(t) = NONCOLLIDING Browniam Motions
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REMARKS: Here we set N =3 as an example.
G(t-s,y,[x) G(t-=s,y,[x) G(t-=s,y;]|X)

Pn (S,(Xl, Xza X3);t9(y19 yza y3)): EN Ez; x det G(t =S, y1 | Xz) G(t -S, yz | Xz) G(t -S, y3 | Xz)
NI G(t_sayl|xz) G(t—s,y2|x3) G(t—s,y3|x3)
h-transform in the sense of Doob I
A time
1 p Vs V3 Karlin-McGregor formula
j Lindstrom-Gessel-Viennot formula

{ G(t—s,y|x) = —M}

1
\27(t—9) exp{ 2(t—79)
? (heat kernel),
{T hy()= J]x;-%).
> I<i<j<N

X1 X2 X3

The process Y(t) is identified with Dyson’s Brownian motion model




Dyson’s Brownian motion model

1. Forallt>0, Y(t)eR! with Probability 1.

2. The process is given as a solution of the stochastic
differential equations,

1 .
dY;(t)=dB, (t) + dt  1<i<N,te[0,)
j:lsjszN,j;ti Yi (t) _Yj (t)

where Bi (1) are independent standard Brownian motions i =1, 2 ,..., N .

1
 Strong repulsive forces among any pair of particles oC : .
particle distance
1
dt
Y; -1,
>
—_— -
k | i Jj J
€ >
L__

25



Remark. HERMITIAN MATRIX-VALUED PROCESS
AND DYSON’S BROWNIAN MOTION MODEL

“Let Bj(1),B;(1),1<i,j<N, be mutually independent (standard one-dim.) Brownian
motions started from the origin. Define

(1 . 1 ~
ﬁBij (1) (|-< J-) ﬁBij 1 (< J-)
S (1) =1 Bi(t)y (=) &; (1) = 0 (I1=1])
1 . 1 & .
\ ﬁBij © a>)) NG B;(t) (>])
«Consider the N x N Hermitian Matrix-Valued stochastic process
E(t)= (‘fij (t))lsi,jSN - (Sij (t)+ \/jlaij (t))lsi,jsN
That is,
S, (1) s.(D+=la,(t) s, (D) ++-la, () S (D +~=1a,,, (1)
s, (1) —+/—1a,,(t) S,, (1) s,, () ++=1a,,(t) .. s, (1)+~—1a, ()
:(t) _ S13 (t) - ﬁalz (t) 323 (t) _ ﬁam (t) 833 (t) S3N (t) + ﬁam (t)
s, () —~—1a, (1) s, (t)—+-la, () s, {O)—~—1la, () .. S, (1)

26



«Consider the variation of the matrix, dZ(t) = (d & (D)
It 1s clear that o
(dg;(t)) =0 1<i,j<N)
And by the previous observation, we find that
(dg,®f)=0  @<izj<N)
(&, MdE, (1) =(d& g, =dt  (1<i=j<N)
(d&®))=dt  (1<i<N)

They are summarized as

(d& dE, 1) =5,0,dt  (1<i,j,k,n<N)

in~ jk

)lgi,jgN

» Since Z(t) is a Hermitian matrix-valued process,
at each time t there is a Unitary Matrix U (t) = (Uj; (1)), j<n - Such that

U (t) Z(HU (1) = A(t) = diag{A (t), A,(t), ..., A, (1)}

where the eigenvalues are in the increasing order
A <SA M) <. <A (1), ‘v’te[O,oo)

A = (A4, (1), 4, (b),...., A, (1)) e R"

as an N-particle stochastic process in one dimension.

* We can regard

27



QUESTION

By the diagonalization of the matrix, what kind of interactions emerge
among the N particles in the process A(t) ?

*From now on we assume that
2.(0)< A,(0)<....< A, (0)

*And we consider the following conditional configuration-space
of one-dim. N particles,

Wi={xeR" X <X, <..<X,|

(This is called the Weyl chamber of type Ay_;.)

28



ANSWER 1 (by Dyson 1962)

1. Forallt>0, A(t)e W, with Probability 1.
2. The process is given as a solution of the stochastic
differential equations,

1
®) ©) j:1§j§N,j¢i /Ii(t)—/Ij (1)

where B, (t) are independent standard one-dim. Brownian motions (1<i1< N)

1<i<N,tel0,00)

« This process is called Dyson’s Brownian motion model.

« Strong repulsive forces emerge among any pair of particles o l
1 particle distance
dt
A
| |
k| i j [
€ >
| l |

29



Lt ( h(x)= [T (x,—x)  (product of differences)
° c I<i<j<N
b= ¥ = CInhx) (<i<N), BE)=(b,(X),b,(x),....b, (X))
JISjsNLj# X — Xj 8Xi

«Consider p(s,x;t,y) = [ transition probability density from A(S)=x to Mt)=y |,
where X =(X,X,, ... Xy ), Y=(Y}5 Ypseens Yy ) -
It solves the Fokker-Planck (FP) equation in the form

;p(s,X;t,y) = ;Ax p(s,x;t,y) + b(x) -V, p(s,x;1,y)

30

ANSWER 2
Introduce a determinant

f(t, = det |G(t X th G(t X
Ly [x)= det [G(t,y, )] with G(t,y, %)= —

Then the solution of the FP equation is given by

1 —(xi—yj)2/2t
C

p(S,x;t,y):h(l)f(t—s,y|x)h(y) for 0<s<t<ow, x,yeW,
X

« If x—>0=(0,0,....,0) at s=0, (all particles starting from the origin)

-N“/2 N N
p(0,0;t,y) = c exp{— %}h(y)2 where |y [’=>y{,C, = 2n)" *TIT().
i=1 i=1

1




Remaks

Vicious Walker Model

1 Diffusion Scaling limit
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6. Temporally Inhomogeneous
Noncolliding Brownian Motions

The temporally inhomogeneous diffusion process
X(t) = (X, (1), X, (1),..., Xy (t)), te[0,T],
with the transition probability density
2
gN,T<o,0;t,y>=cxexp{—'y' } [TV, - YNy T —t.y).

2t I<i<j<N

fy(t=s,y|x)N (T -t,y)
N (T =s,x)

for0<s<t<T,x,yeR", where0=(0,0,...0),

N N
C:2—N/2-|- N(N—l)/4t—N /Z/HF(J/z), |y |2:Zyj2 .
j=1

j=1

gN,T(Sax;t9Y):

b

The temporally homogeneows diffusion process
Y(t)=lim;__ X(t), te[0,00).

32



Case t=T

I'=t
A X0 ) x

Noncolliding

Y

Case T >
A

Noncolliding
A

X X3




Transition in Time of Particle Distribution
* This observation implies that there occurs a transition.

For a finite but large T

Oy (0, O,t,y)ocexp{——Zy } H(Xk_xj)2 for O0<t<<T

1< j<k<N

As the time 1 goes on from 0 to T

1 N
gN,T(O,O;T,y)ocexp{ —Zylz} H(Xk—x) at t=1T

1I<j<k<N

34



Three Standard (Wigner-Dyson) Random Matrix Ensembles

[1] The distribution of Eigenvalues of N x N Hermitian Matrices
in the Gaussian Unitary Ensemble (GUE) is given in the form

exp{—li/l?} T - 202
762 i k J

O =l 1< j<k<N

[2] The distribution of Eigenvalues of N x N Real Symmetric Matrices
in the Gaussian Orthogonal Ensemble (GOE) is given in the form

1 N
eXP{‘zZﬂf} [IA =45
2070 Ji<j<ks<N

[3] The distribution of Eigenvalues of N x N Quternion Self-Dual Hermitian
Matrices in the Gaussian Symplectic Ensemble (GSE) is given in the form

exp{—li/l?} 1A 2%
762 i k J

O =l 1< j<k<N

35



“Let Bj(1),B;(1),1<i,j<N, be mutually independent standard Brownian motions

started from the origin. Define

(1 . B! .

ﬁBij 1 <) ﬁﬁij t <)
S;; (1) =1 B;() (1=])) a; (1) =1 0 =],

k%Bij(t) (i>j) k—%ﬂij(t) (i>])

)

t
~ (S
where (1) = B; (t)—_['f”—fsds , 1<i< <N, te[0,T]. (Brownian bridges)
0

«Consider the N x N Hermitian Matrix-Valued stochastic process

EN,T ()= (gij (t))lsi,jSN - (Sij (t)+ \/jlaij (t))lsi,jSN

That is,
5., (1) s +V-1a,) s, 0 +-la, ()
s (D) —v—1a,(t) 5,5 () S, (1) + v/~ 1a,,(t)
—_ (t) — Si3 (t) o \/__13-13 (t) S)3 (t) o \/__18-23 (t) S33 (t)

S —V=1a,, (1) S,y () —V=Tay (1) Sy () —v-1ay () ..

Sy (D +~=Ta,y (1)
S O+ =lay, ()
sy (D) +A/—1a, (1)

36




« Since Z(t) is a Hermitian matrix-valued process,
at each time t there is a Unitary Matrix U (t) = (U; (1)) jy » such that

U (t) Z(HU (1) = A(t) = diag{A (t), A,(t),...., A, ()}

where the eigenvalues are in the increasing order
A <A M) <S4 (1), Vte[O,oo)

A = (A4, (1), 4, (b),...., A, (1)) e R"

as an N-particle stochastic process in one dimension.

 We can regard

We have proved the following theorem.

37

Theorem
The eigenvalue process A(t) = (21 (t), 4, (t),...., Ay (t)) is equivalent
in distribution with the system of noncolliding Brownian motions X(t)

with the initial condition X(0)=0 (i.e. all particles start from the origin),
which are obtained as the scaling limit of vicious walker model.
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7. PATTERNS of NONCOLLIDING PATHS

AND RANDOM MATRIX THEORIES
7.1 STAR CONFIGURATIONS

e There occurs a transition in distribution from GUE to GOE.

) ) 7: A t- o
wET W
5
3 GUE
O x}

* This temporal transition can be decribed by the Two-Matrix Model of Pandey and Mehta, in
which a Hermitian random matrix is coupled with a real symmetric random matrix.

See Katori and Tanemura, PRE 66 (2002) 011105/1-12.
* Techniques developed for multi-matrix models can be used to evaluate the dynamical correlation
functions. Quaternion determinantal expressions are derived.

See Nagao, Katori and Tanemura, Phys. Lett. A307 (2003) 29-35.
« Using the exact correlation functions, we can discuss the scaling limits of
infinite particles N — oo and the infinite time-period T — oo.

See Katori, Nagao and Tanemura, Adv.Stud.Pure Math. 39 (2004) 283-306.



7.2 Watermelon Configurations

Consider a finite time-period [0,T] and set
y=0 at the initial time t=0 and the final time t=T,
The transition probability density is given as

| ¢ _N2/2 |Y|2
watermelon

0,0;t,y)=—<t 1-= exps —

! (OLY) C{( Tj} Xp{ 2t(1—t/T)

1

The distribution is kept in the form of GUE. ;
Only the variance changes as a function of tas o2 = t(l — —j.

T
A I

T

}h(y)2
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7.3 Banana Configurations

» Consider 2N particle system. Set y=0 at the initial time t=0.
At the final time t=T, we assume the following Pairing of Particle Positions.
V=Y, Vi=VY,s s Yopuy = Yoy With y <y . <<y, . .
» The transition probability density is given by
banana
qbanana (O, X,t, y) — f(ta y | X)bijana (T t
NPT, x)

Y) for 0<s<t<T, x,ye W/

2N ?

anana Xi
where N"™™(t,x) = VJSKKZnggKN{G(t,y,- X)) tG(t,y,- |xi)} .

* As t=0— T, there occurs a transition
from the GUE distribution to the GSE distribution.

At
I

GSE
A

GUE
>
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7.4 Star Configurations with Absorbing Wall

* Put an Absorbing Wall at the origin. Consider the N Brownian particles started from 0
conditioned never to collide with each other nor to collide with the wall.
* This is identified with the h-transform of the N-dim. Absorbing Brownian motion in

WS ={xeR":0<Xx <X, <...<X,} (Weylchamberof typeC, ).

p

class C I

class C
>

0 X
* For T <o , we can obtain a process showing a transition from

the class C distribution of Altland and Zirnbauer (1996);

N
q° (0,x;t,y) o exp{ . } [1Ci -y [ 1ye for 0<t<<T
1<i<j<N k=1

to the class CI distribution (studied for a theory of quantum dots)

N
a(0.x:T. y)ocexp{ y} [T -yDI Ty at t=T.
k=1

2T I<i< j<N
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7.5 Star Configurations with Reflection Wall

e Put a reflection wall at the origin. Consider the N Brownian particles started form 0
conditioned never to collide with each other.
e This is identified with the h-transform of the N-dim. Absorbing Brownian motion in

W, = {X eR" X KX, <....< XN} (Weylchamber of type D).

class D
>

0 X
For T <oo, we can obtain a process showing a transition from

the class D distribution of Altland and Zirnbauer (1996);

qD(O,X;t,y)OCeX{ |Y| } H(yj y|2)2 for O<t<<T
2 I<i<j<N

to the "real” class D distribution

qD(o,x;T,y)ocexp{ 'y} [1G2-y2) at t=T.
2T I<i< <N



7.6 Banana Configurations with Reflection Wall

« Put a reflection wall at the origin.
« Consider the 2N Brownian particles started from 0 in Banana configurations.

class D III

Tr

A

» class D

0

X

* For T <00 we can obtain a process showing a transition
from the class D distribution of Altland and Zirnbauer

D, banana | y |2
q- (0,x;t,y) oc expy————

To the class DIII distribution.

P> P (0 x: T, y) o exp{—

2t

'y

odd |2 )

[TC(vi-yi)? for 0<t<<T
i<N

e I (yzzj—l

I<i<j<N

N
o y22i—1)4£[1 Yo, at t=T.
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7.7 CONCLUDING REMARKS

e There are 10 CLASSES of Gaussian Random Matrix Theories.
Standard (Wigner-Dyson)

GUE Star configurations
GOE ><
GSE

Banana configurations
Nonstandard (chiral random matrices)  Particle Physics of QCD

chGUE —
chGOE ——— Realized by Noncolliding Systems of
chGSE — 2D Bessel processes and Generalized Meanders

Nonstandard (Altland-Zirnbauer) Mesoscopic Physics with Superconductivity

class C
class CI \ Star config. with Absorbing Wall

class D
class DIII \ Banana config. With Reflection Wall

All of the 10 eigenvalue-distributions can be realized by the
Noncolliding Diffusion Particle Systems (Vicious Walks).

See Katori and Tanemura, J.Math.Phys.(2004)



8. Remaks (again)

Vicious Walker Model

1 Diffusion Scaling limit
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Enumerative Combinatorics
Young Tableaux
Symmetric Functions

I

Representation Theory of

Noncolliding Diffusion Processes Lie Algebra/Lie Groups
determinantal expressions ﬁ
1 of correlation functions
N — oo limit o
. - Random Matrix Theory
Infinite Systems of Matrix Models in Statistical Phys.
Noncolliding Diffusion Particles and
Theory of Entire Functions String Theory’ etcC.....
I hope .....
Statistical Physics f\
Probability Theory Other Fields of
(Infinite) Particle Systems ~ Noncolliding Processes  Mathematics




Time

(b)

Figure 1. Samples of paths for (a) X°%°(¢) and (b) X%%(¢),t € [0,T], generated by
simulating the corresponding eigenvalue processes of random-matrix models.

yOR: / —
,~,—r~ )

0 Time

(b)

T

Figure 2. Samples of paths for (a) Y°°(t) and (b) Y&+ (¢),t € [0,T].

INMKZS 244 et. al. : Phys. Rev. E 78 (2008) 051102
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