Detailed program

1 Introduction by Prof. Zuber (Week 1, 5 hours)
AN INTRODUCTION TO RANDOM MATRICES

1. General Features,
2. Computational Techniques, (including ”angular matrix integrals”)
3. Critical limits

4. Complex or normal matrices and applications

2 Course by Prof. Majumdar (Week 1, 10 hours)

EXTREME VALUE STATISTICS IN BROWNIAN MOTIONS AND RANDOM
MATRICES

I will first consider the simple one dimensional Brownian motion and intro-
duce the method of path integrals to study various properties of the Brownian
motion: (i) the statistics of first-passage time (ii) the statistics of maximum etc.
The path-integral method makes a beautiful connection to a free particle prob-
lem in quantum mechanics. Next we will introduce various constraints on the
Brownian motion and study the properties of a variety of constrained Brownian
motions such as (a) Brownian bridge (b) Brownian excursion (¢) Brownian me-
ander etc. We will see how the path-integral method can be very nicely adapted
to study these constrained processes.

Next I’ll change subject and discuss some basic properties of random matri-
ces, in particular focusing on the extreme properties, i.e., on the distribution of
the largest eigenvalue of a random matrix. I'll discuss various recent develope-
ments on the subject, in particular, the so called Tracy-Widom distribution.

Next, we will connect up these two apparently different subjects of Brownian
motions and random matrices. We will generalize the path-integral method
for a single Brownian motion to the case of multiple Brownian motions, with
or without interaction. In particular, when the Brownian motions are non-
intersecting, we will see how a description in terms of random matrices appear
in this problem. Then using the results from the random matrix theory, we will
derive some exact asymptotic results for the extreme variables in a system on
non-intersecting Brownian motions. We will also see how similar models appear
in the Gauge theory in high energy physics. The techniques that we will discuss
will thus have very broad applications.



3 Course by Prof. Krattenthaler (Week 1, 10
hours)

THE COMBINATORICS OF NON-INTERSECTING LATTICE PATHS

Non-intersecting lattice paths in mathematics and physics have an interesting
(and involved) history: in their most general form, they appear for the first
time (under the name “pairwise node disjoint paths”) in 1973 in a paper on
representations of matroids by Bernt Lindstréom. In the 1980s, three different
groups “rediscovered” non-intersecting lattice paths independently, guided by
concrete applications that they had in mind: Ira Gessel and Xavier Viennot (and
followers) used non-intersecting lattice paths in order to enumerate plane par-
titions and various kinds of tableaux, a group of combinatorial mathematicians
and chemists (John, Sachs, Gronau, Just, Schade, Scheffler, and Wojciechowski)
used them in order to analyse Pauling’s bond order in benzenoid hydrocarbon
molecules, and Michael Fisher introduced them under the name of “vicious walk-
ers” into Statistical Mechanics in order to model wetting and melting, thereby
finding as well many followers. In fact, continuous versions had already been
looked at by Karlin and McGregor around 1960 (in probability), and by J.
C. Slater around 1930 and by de Gennes in 1968 (in physics). Confusing as
all this may appear, there is at least now a clear picture of what the funda-
mental results concerning the enumeration of non-intersecting lattice paths are.
Moreover, the above historical sketch underlines nicely that these objects are
of importance and interest in several areas of Combinatorics, Probability, and
Statistical Physics.

In the first part of these lectures, I shall introduce non-intersecting lattice
paths, and I shall present the basic results: the Lindstrom-Gessel-Viennot theo-
rem (as I like to call it), the Okada-Stembridge theorems and the minor summa-
tion formula of Ishikawa-Wakayama, plus some variations. This part will also
include a discussion of the closely related Gessel-Zeilberger theorem of walks in
Weyl chambers, including the necessary background on reflection groups.

In the second part, I shall discuss applications: these concern mainly the
afore-mentioned plane partitions and tableaux, and rhombus tilings. When dis-
cussing tableaux, I also hope to touch upon topics such as symmetric functions
and, in particular, Schur functions and other classical group characters.

The final part will be concerned with the asymptotic properties of a fixed
number of non-intersecting lattice paths as the length of the paths tends to
infinity.

4 Course by Prof. Katori, Week 2, 10 hours

SYMMETRIES AND STRUCTURES OF MATRIX- VALUED STOCHASTIC
PROCESSES AND NONCOLLIDING DIFFUSION PROCESSES

In my lectures, first I give a proof of the equivalence in distribution of
eigenvalue processes of Hermitian matrix-valued stochastic processes and one-
dimensional diffusion processes of particles conditioned never to collide with
each other, and then I show that the consequences of this equivalence are very
rich both in mathematics and physics.



The following correspondence between the random matrix (RM) theory and
the present study of stochastic processes is explained : (i) Addition of higher
symmetries to RM ensembles corresponds to imposing spatial boundary condi-
tions to stochastic processes, (ii) Two-matrix models corresponds to temporally
inhomogeneous versions of processes, (iii) Breaking symmetry by introducing
external sources in RM models corresponds to generalizing initial states in pro-
cesses.

Using the above correspondence, I discuss the 10 classes of RM theory of Al-
tland and Zirnbauer and a variety of Itzykson-Zuber-Harish-Chandra formulas
of integrals over unitary groups with additional symmetries. The determinantal
and pfaffian structures of spatial and temporal correlations of the processes are
derived. In particular, the Eynard-Mehta-type dynamical correlation-kernels,
first calculated for two-matrix models, are obtained as direct consequences of
the equivalence between eigenvalue processes and noncolliding processes. The-
ories of multiple orthogonal polynomials and entire functions on the complex
plane are introduced to perform infinite-particle limits and the determinantal
processes with sine-, Airy-, Bessel-, and Pearcey-kernels are discussed. Related
new topics, e.g., the extreme-value distributions studied by Schehr et. al. and
interlacing phenomena in Dyson’s Brownian motion models will be included.
My talk is mainly based on the joint work with H. Tanemura.

5 Course by Prof. Johansson (Week 2, 10 hours)
DETERMINANTAL PROCESSES, RANDOM GROWTH AND RANDOM TILINGS

I will give an introduction to determinantal point processes and the ba-
sic limit processes that come out of discrete or continuous non-colliding paths.
These limit processes include the Sine, Airy, Pearcey and Tacnode kernel pro-
cesses and their extended versions. These processes occur as natural scaling
limits in random matrix theory but also in several discrete statistical mechan-
ical models, e.g. random tilings and 141-dimensional random growth. I will
discuss some of these applications. In some cases these models give rise directly
to a determinantal point process by some combinatorial argument, whereas in
other cases the determinantal limit processes only occur, or are expected to
occur, in the limit.



