
ar
X

iv
:2

20
7.

14
36

2v
3 

 [
m

at
h.

PR
] 

 1
2 

A
ug

 2
02

2

Point Processes and Multiple SLE/GFF Coupling ∗

Makoto Katori †

12 August 2022

Abstract

In the series of lectures, we will discuss probability laws of random points, curves, and
surfaces.

Starting from a brief review of the notion of martingales, one-dimensional Brownian motion
(BM), and the D-dimensional Bessel processes, BESD, D ≥ 1, first we study Dyson’s Brownian
motion model with parameter β > 0, DYSβ , which is a one-parameter family of repulsively
interacting N Brownian motions on R, N ∈ N := {1, 2, . . .}, and is regarded as multivariate
extensions of BESD with the relation β = D−1. In particular, the determinantal structures are
proved for DYS2, which is realized as the eigenvalue process of Hermitian-matrix-valued BM
studied in random matrix theory.

Next, using the reproducing kernels of Hilbert function spaces, the Gaussian analytic func-
tions (GAFs) are defined on a unit disk D and an annulus Aq := {z ∈ C : q < |z| < 1},
q ∈ (0, 1), which provide models of random surfaces. As zeros of the GAFs, determinantal point
processes and permanental-determinantal point processes are obtained, which have symmetry
and invariance associated with conformal transformations.

Then, the Schramm–Loewner evolution with parameter κ > 0, SLEκ, is introduced, which
is driven by a BM on R and generates a family of conformally invariant probability laws of
random curves on the upper half complex plane H. We regard SLEκ as a complexification of
BESD with the relation κ = 4/(D − 1).

The last topic of lectures is the construction of the multiple SLEκ, which is driven by the
N -particle DYSβ on R and generates N interacting random curves in H. There, we define the
Gaussian free field (GFF) and its generalization called the imaginary surface with parameter
χ, which are considered as the distribution-valued random fields on H. Under the relation
χ = 2/

√
κ− κ/

√
2, we characterize the SLE/GFF coupling studied by Dubédat, Sheffield, and

Miller by its temporal stationarity, and extend it to multiple cases. We prove that the multiple
SLE/GFF coupling is established, if and only if the driving N -particle process on R is identified
with DYSβ with the relation β = 8/κ. This relation between parameters is very simple, but
highly nontrivial, since if we simply combine the relations β = D−1 and κ = 4/(D−1) mentioned
above, we will have a different relation β = 4/κ. Under the present multiple SLE/GFF coupling
with β = 8/κ, we can prove that the multiple SLE driven by DYSβ exhibits the phase transitions
at κ = 4 and κ = 8 in the similar way to the original SLEκ with a single SLE curve.
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1 Determinantal Martingales and Determinantal Stochastic Pro-
cesses

1.1 One-dimensional standard Brownian motion (BM)

First of all, we consider the motion of a Brownian particle in one-dimensional space R starting
from the origin 0 at time t = 0. At each time t > 0, the particle position is randomly distributed,
and each realization of its path (trajectory) is denoted by ω and called a sample path or simply
a path. Let Ω be the collection of all sample paths and we call it the sample path space. The
position of the Brownian particle at time t ≥ 0 in a path ω ∈ Ω is written as B(t, ω). Usually we
omit ω and simply write it as B(t), t ≥ 0.

We represent each event associated with the process by a subset of Ω, and the collection of all
events is denoted by F . The whole sample path space Ω and the empty set ∅ are in F . For any
two sets A,B ∈ F , we assume that A ∪ B ∈ F and A ∩ B ∈ F . If A ∈ F , then its complement Ac is
also in F . It is closed for any infinite sum of events in the sense that, if An ∈ F , n = 1, 2, . . . , then
∪n≥1An ∈ F . Such a collection of events F is said to be a σ-field (sigma-field). The symbol σ is
for ‘sum’.

A probability measure P is a nonnegative function defined on the σ-field F . Since any
element of F is given by a set as above, any input of P is a set; P is a set function. It satisfies
the following properties: P[A] ≥ 0 for all A ∈ F , P[Ω] = 1, P[∅] = 0, and if A,B ∈ F are disjoint,
A ∩ B = ∅, then P[A ∪ B] = P[A] + P[B]. In particular, P[Ac] = 1 − P[A] for all A ∈ F . The triplet
(Ω,F ,P) is called the probability space.

The smallest σ-field containing all intervals on R is called the Borel σ-field and denoted
by B(R). A random variable or measurable function is a real-valued function f(ω) on Ω
such that, for every Borel set A ∈ B(R), f−1(A) ∈ F . Two events A and B are said to be
independent if P[A ∩ B] = P[A]P[B]. Two random variables X and Y are independent if the
events A = {X : X ∈ A} and B = {Y : Y ∈ B} are independent for any A,B ∈ B(R).

The one-dimensional standard Brownian motion, {B(t, ω) : t ≥ 0}, has the following
three properties:

(BM1) B(0, ω) = 0 with probability one.

(BM2) There is a subset of the sample path space Ω̃ ⊂ Ω, such that P[Ω̃] = 1 and for any
ω ∈ Ω̃, B(t, ω) is a real continuous function of t. We say that B(t) has a continuous path
almost surely (a.s., for short).
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(BM3) For an arbitrary M ∈ N := {1, 2, 3, . . . }, and for any sequence of times, t0 := 0 <
t1 < · · · < tM , the increments B(tm) −B(tm−1),m = 1, 2, . . . ,M, are independent, and each
increment is in the normal distribution (the Gaussian distribution) with mean 0 and
variance σ2 = tm − tm−1. It means that for any 1 ≤ m ≤M and a < b,

P[B(tm) −B(tm−1) ∈ [a, b]] =

∫ b

a
p(tm − tm−1, z|0)dz,

where we define for x, y ∈ R

p(t, y|x) =





1√
2πt

e−(x−y)2/2t, for t > 0,

δ(x− y), for t = 0.
(1.1)

Unless otherwise noted, the one-dimensional standard Brownian motion is simply abbreviated
to BM in this lecture note. The probability measure P for the BM in particular is called the
Wiener measure. The expectation with respect to the probability measure P is denoted by E.
We write the conditional probability as P[·|C], where C denotes the condition. The conditional
expectation is similarly written as E[·|C].

The third property (BM3) implies that for any 0 ≤ s ≤ t <∞

P[B(t) ∈ A|B(s) = x] =

∫

A
p(t− s, y|x)dy (1.2)

holds, ∀A ∈ B(R),∀ x ∈ R. Therefore the integral kernel p(t, y|x) given by (1.1) is called the
transition probability density function of Brownian motion starting from x. The probability
that the BM is observed in a region Am ∈ B(R) at time tm for each m = 1, 2, . . . ,M is then given
by

P[B(tm) ∈ Am,m = 1, 2, . . . ,M ] =

∫

A1

dx1 · · ·
∫

AM

dxM

M∏

m=1

p(tm − tm−1, xm|xm−1), (1.3)

where x0 := 0.
By (BM3), we can see that, for any c > 0, the probability distribution of B(c2t)/c is equivalent

with that of B(t) at arbitrary time t ≥ 0. It is written as

1

c
B(c2t)

d
= B(t), ∀c > 0,

where the symbol
d
= is for equivalence in distribution. Moreover, (1.3) implies that, for any

c > 0, B(t), t ≥ 0 and its time changed process with t 7→ c2t multiplied by a factor 1/c (dilatation)
follow the same probability law. This equivalence in probability law of stochastic processes is
expressed as

(B(t))t≥0
(law)
=

(
1

c
B(c2t)

)

t≥0

, ∀c ≥ 0, (1.4)

and called the scaling property of Brownian motion.
For a > 0, let Ta = inf{t ≥ 0 : B(t) = a}. Then for any t ≥ 0,

P[Ta < t,B(t) < a] = P[Ta < t,B(t) > a], (1.5)

4



since the transition probability density (1.1) is a symmetric function of the increment y − x. This
property is called the reflection principle of BM. For {ω : B(t) > a} ⊂ {ω : Ta < t}, a > 0, the
above is equal to P[B(t) > a].

The formula (1.3) also means that for any fixed s ≥ 0, under the condition that B(s) is given,
{B(t) : t ≤ s} and {B(t) : t > s} are independent. This independence of the events in the future
and those in the past is called the Markov property. A positive random variable τ is called
stopping time (or Markov time), if the event {ω : τ ≤ t} is determined by the behavior of the
process until time t and independent of that after t. For any stopping time τ , {B(t) : t ≤ τ} and
{B(t) : t > τ} are independent. It is called the strong Markov property. A stochastic process
which has the strong Markov property and has a continuous path almost surely is generally called
a diffusion process.

For each time t ∈ [0,∞), we write the smallest σ-field generated by the BM up to time t ≥ 0
as σ(B(s) : 0 ≤ s ≤ t) and define

Ft := σ(B(s) : 0 ≤ s ≤ t), t ≥ 0. (1.6)

By definition, with respect to any event in Ft, B(s) is measurable at every s ∈ [0, t]. Then we have
a nondecreasing family {Ft : t ≥ 0} of sub-σ-fields of the original σ-field F in the probability space
(Ω,F ,P) such that Fs ⊂ Ft ⊂ F for 0 ≤ s < t <∞. We call this family of σ-fields a filtration.

Since the probability density of increment in any time-interval t− s > 0, p(t− s, z|0), has mean
zero, BM satisfies the equality

E[B(t)|Fs] = B(s), 0 ≤ s < t <∞, a.s. (1.7)

That is, the mean is constant in time, even though the variance increases in time as σ2 = t.
Processes with such a property are called martingales. We note that for 0 ≤ s < t <∞

E[B(t)2|Fs] = E[(B(t) −B(s))2 + 2(B(t) −B(s))B(s) +B(s)2|Fs]

= E[(B(t) −B(s))2|Fs] + 2E[(B(t) −B(s))B(s)|Fs] + E[B(s)2|Fs].

By the property (BM3) and the definition of Fs,

E[(B(t) −B(s))2|Fs] = t− s,

E[(B(t) −B(s))B(s)|Fs] = E[B(t) −B(s)|Fs]B(s) = 0,

E[B(s)2|Fs] = B(s)2.

Then we have the equality

E[B(t)2 − t|Fs] = B(s)2 − s, 0 ≤ s < t <∞, a.s. (1.8)

It means that B(t)2 − t is a martingale.
For the transition probability density of BM (1.1), it should be noted that p(·, y|x) = p(·, x|y)

for any x, y ∈ R, and ut(x) := p(t, y|x) is a unique solution of the heat equation (diffusion
equation)

∂

∂t
ut(x) =

1

2

∂2

∂x2
ut(x), x ∈ R, t ≥ 0 (1.9)
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with the initial condition u0(x) = δ(x− y). The solution of (1.9) with the initial condition uf0(x) =
f(x), x ∈ R is then given by

uft (x) = Ex[f(B(t))] =

∫ ∞

−∞
f(y)p(t, y|x)dy, (1.10)

if f is a measurable function satisfying the condition
∫∞
−∞ e−ax2 |f(x)|dx <∞ for some a > 0. Since

p(t, y|x) plays as an integral kernel in (1.10), it is also called the heat kernel.

For 0 ≤ s < t < ∞, ξ ∈ R, consider E[e
√
−1ξ(B(t)−B(s))|Fs]. It is calculated as the Fourier

transform of the transition probability density p(t− s, ·|0);

∫ ∞

−∞
e
√
−1ξzp(t− s, z|0)dz =

∫ ∞

−∞
e
√
−1ξz e

−z2/2(t−s)

√
2π(t− s)

dz

= e−ξ2(t−s)/2. (1.11)

The obtained function of ξ ∈ R,

E[e
√
−1ξ(B(t)−B(s))|Fs] = e−ξ2(t−s)/2, 0 ≤ s < t <∞, (1.12)

is called the characteristic function of BM.

1.2 Itô’s formula and Kolmogorov equation

Let X(t), t ≥ 0 be a one-dimensional diffusion process on the probability space (ΩX ,FX ,PX),
where the expectation is written as EX and the filtration is given by the natural filtration of
X; (FX)t = σ(X(s) : 0 ≤ s ≤ t), t ≥ 0. For each time interval [0, t], t > 0, put n ∈ N and let
∆n = ∆n([0, t]) be a subdivision of [0, t] with t0 := 0 < t1 < · · · < tn−1 < tn := t. Then we define
Q∆n(t) =

∑n
m=1(X(tm) −X(tm−1))2. If there is a process Q(t), t ≥ 0 such that

lim
n→∞

PX [|Q∆n(t) −Q(t)| > ε] = 0, ∀ε > 0 (1.13)

holds provided max1≤m≤n |tm − tm−1| → 0 as n → ∞, then we call Q(t), t ≥ 0, the quadratic
variation of X(t), t ≥ 0 and express it by 〈X,X〉t, t ≥ 0.

For BM, B(t), t ≥ 0, set n ∈ N, t0 := 0 < t1 < · · · < tn−1 < tn := t and put Q∆n
BM(t) =∑n

m=1(B(tm)−B(tm−1))2. By the property (BM3), the mean is given by E[Q∆n
BM(t)] =

∑n
m=1(tm−

tm−1) = t. The variance of Q∆n
BM(t)

σ∆n
BM(t)2 := E[(Q∆n

BM(t) − t)2]

= E



{

n∑

m=1

{
(B(tm) −B(tm−1))2 − (tm − tm−1)

}}2
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is calculated as

n∑

m=1

{
E[(B(tm) −B(tm−1))

4] − 2(tm − tm−1)E[(B(tm) −B(tm−1))2]

+(tm − tm−1)
2
}

=

n∑

m=1

{
3(tm − tm−1)2 − 2(tm − tm−1)

2 + (tm − tm−1)2
}

= 2
n∑

m=1

(tm − tm−1)2 ≤ 2t max
1≤m≤n

|tm − tm−1|, (1.14)

where independence of increments of BM mentioned in (BM3) and

E[(B(t) −B(s))4] = 3(t− s)2, 0 ≤ s ≤ t (1.15)

were used. By Chebyshev’s inequality, we have

P[|Q∆n
BM(t) − t| > ε] ≤ σ∆n

BM(t)2

ε2
, ∀ε > 0.

Provided that max1≤m≤n |tm− tm−1| → 0 as n→ ∞, (1.14) gives limn→∞ σ∆n
BM(t) = 0 and it proves

〈B,B〉t = t, t ≥ 0. (1.16)

For a stopping time τ , we put Xτ (t) := X(t ∧ τ), t ≥ 0, where t ∧ τ := min{t, τ}. We define
a diffusion process X(t), t ≥ 0 as a local martingale, if there exists stopping times τn, n ∈ N

such that (i) the sequence {τn}n∈N is nondecreasing and limn→∞ τn = ∞ a.s., and (ii) for every
n, the process Xτn(t), t ≥ 0 is a martingale. When X(t) is a local martingale, we can prove
that a unique increasing continuous process is given by 〈X,X〉t, t ≥ 0 such that 〈X,X〉0 = 0 and
X(t)2 − 〈X,X〉t, t ≥ 0 provides a local martingale.

Assume that X(t) and Y (t), t ≥ 0 are both local martingales. Then (X(t) + Y (t))2 − 〈X +
Y,X + Y 〉t and (X(t) − Y (t))2 − 〈X − Y,X − Y 〉t, t ≥ 0 are local martingales. Therefore, their
difference 4X(t)Y (t) − {〈X + Y,X + Y 〉t − 〈X − Y,X − Y 〉t}, t ≥ 0 is also a local martingale. For
any pair of local martingales X(t) and Y (t), t ≥ 0, we define the mutual quadratic variation
(cross variation) process as

〈X,Y 〉t :=
1

4
{〈X + Y,X + Y 〉t − 〈X − Y,X − Y 〉t}, t ≥ 0. (1.17)

We can prove that, if Bi(t), t ≥ 0, i = 1, 2, . . . ,D are independent BMs, then

〈Bi, Bj〉t = δijt, i, j = 1, . . . ,D, t ≥ 0. (1.18)

For a continuous process A(t), t ≥ 0, here we consider the quantity

S∆n(t) =
n∑

m=1

|A(tm) −A(tm−1)|
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instead of Q∆n(t), where ∆n, n ∈ N is a subdivision of the time interval [0, t]. We can see that if
∆n ⊂ ∆n+1, then S∆n(t) ≤ S∆n+1(t),∀ t ≥ 0. Assume that max1≤m≤n |tm − tm−1| → 0 as n → ∞.
Let limn→∞ sup∆n

S∆n(t) = S(t) ≤ ∞ and call it the variation of A on [0, t]. If S(t) < ∞ for
every t, then the process A(t), t ≥ 0 is of finite variation. Let SBM(t), t ≥ 0 be the variation of
BM. We have

Q∆n
BM(t) ≤ sup

1≤m≤n
|B(tm) −B(tm−1)|SBM(t), t ≥ 0, n ∈ N.

By the property (BM2), RHS becomes 0 as n → ∞ if SBM(t) is finite. On the other hand, we
have proved Q∆n

BM(t) → 〈B,B〉t as n → ∞ in probability and the fact (1.16). Hence SBM(t) = ∞
a.s. ∀t ≥ 0.

Let N ∈ N and {X1(t), . . . ,XN (t)}, t ≥ 0 be a set of diffusion processes. Put X(t) =
(X1(t), . . . ,XN (t)). Let F be a real function of (t,x) ∈ [0,∞) × RN , which is bounded and
has a bounded first-order derivative with respect to t and bounded first- and second-order deriva-
tives with respect to xj, 1 ≤ j ≤ N , and we denote this by F ∈ C1,2

b . We know that, in order to
describe the statistics of a function of several random variables, we have to take into account the
‘propagation of error’. For the process F (t,X(t)) that is defined as a function of t as well as a
functional of processes X1(t), . . . ,XN (t), t ≥ 0, Itô’s formula gives an equation which governs the
difference of F (t,X(·)) as

dF (t,X(t)) =
N∑

i=1

∂F

∂xi
(t,X(t))dXi(t) +

∂F

∂t
(t,X(t))dt

+
1

2

∑

1≤i,j≤N

∂2F

∂xi∂xj
(t,X(t))d〈Xi,Xj〉t, t ≥ 0. (1.19)

The first term gives a local martingale and the second and third terms give processes of finite
variations. A continuous process X given by the sum of a local martingale M and a finite-variation
process A,

X(t) = M(t) +A(t), t ≥ 0,

is called a semi-martingale. We will use the fact that if the continuous process F (t,X(t)), t ≥ 0
is a local martingale, then its finite-variation part should vanish, and vice versa.

Let X(t), t ≥ 0 be a one-dimensional diffusion in (ΩX ,FX ,PX), which satisfies the following
SDE

dX(t) = σ(X(t))dB(t) + b(X(t))dt, X(0) = x. (1.20)

Here B(t), t ≥ 0 is BM and the functions σ, b : R 7→ R satisfy the condition that ∃K ≥ 0, s.t.
|σ(x) − σ(y)| ≤ K|x − y|, |b(x) − b(y)| ≤ K|x − y|, x, y ∈ R. (This is called the Lipschitz
continuity.) Put

u(s, x) = Ex[f(X(T − s))], 0 ≤ s < T <∞, (1.21)

with an (FX )T -measurable bounded function f . By the Markov property, for 0 ≤ s < t < T <∞,

u(s, x) = Ex
[
EX(t−s)[f(X(T − t))]

]

= Ex[u(t,X(t − s))]. (1.22)
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Assume that u(s, x) ∈ C1,2
b . Then by Itô’s formula (1.19),

u(t,X(t− s)) − u(s, x) =

∫ t−s

0

(
∂u

∂s
+ Lu

)
(s+ r,X(r))dr

+

∫ t−s

0
σ(X(r))

∂u

∂x
(s+ r,X(r))dB(r), (1.23)

where

(Lf)(x) =
1

2
a(x)

d2

dx2
f(x) + b(x)

d

dx
f(x) (1.24)

with
a(x) = σ(x)2. (1.25)

Since (1.22) holds, taking expectation of (1.23) gives

Ex

[∫ t−s

0

(
∂u

∂s
+ Lu

)
(s+ r,X(r))dr

]
= 0,

where the expectation of the second term in RHS of (1.23) vanished for it is a martingale. Set
h = t− s, divide the both side of the above equation by h and take the limit h→ 0. Then we have

∂u(s, x)

∂s
+ Lu(s, x) = 0. (1.26)

Since L acts as a differential operator with respect to the initial value x, it is called the backward
Kolmogorov equation. The differential operator (1.24) is called the generator of the diffusion
process.

1.3 Martingale polynomials of BM

Let
Gα(t, x) = eαx−α2t/2. (1.27)

For BM, we perform the transformation with the parameter α ∈ C := {z = x +
√
−1y : x, y ∈ R},

B 7→ B̌α defined by
B̌α(t) = Gα(t, B(t)), t ≥ 0, (1.28)

which is called the Esscher transformation. Since

E[eαB(t)] =

∫ ∞

−∞
eαxp(t, x|0)dx = eα

2t/2, t ≥ 0.

we can see that

Gα(t, B(t)) =
eαB(t)

E[eαB(t)]
, t ≥ 0, (1.29)

and hence

E[Gα(t, B(t))|Fs] =
E[eαB(t)|Fs]

E[eαB(t)]

=
E[eαB(s)eα(B(t)−B(s)) |Fs]

E[eαB(s)eα(B(t)−B(s)) ]
, 0 < s < t.

9



By the definition of Fs and independence of increment of BM (the property (BM3)), the numerator
is equal to eαB(s)E[eα(B(t)−B(s)) ], and the denominator is equal to E[eαB(s)]E[eα(B(t)−B(s)) ]. Hence
the above equals eαB(s)/E[eαB(s)] = Gα(s,B(s)). Therefore, Gα(t, B(t)) is a martingale:

E[Gα(t, B(t))|Fs] = Gα(s,B(s)), 0 ≤ s ≤ t. (1.30)

The function (1.27) is expanded as

Gα(t, x) =

∞∑

n=0

mn(t, x)
αn

n!
(1.31)

with

mn(t, x) =

(
t

2

)n/2

Hn

(
x√
2t

)
, n ∈ N0 := {0, 1, 2, . . . }. (1.32)

Here {Hn(x)}n∈N0
are the Hermite polynomials of degrees n ∈ N0,

Hn(x) := (−1)nex
2 dne−x2

dxn
=

[n/2]∑

k=0

(−1)k
n!

k!(n− 2k)!
(2x)n−2k, (1.33)

where for a ≥ 0, [a] denotes the largest integer which is not larger than a. We can show the
following contour integral representations of the Hermite polynomials,

Hn(z) =
n!

2π
√
−1

∮

C(δ0)
dη

e2ηz−η2

ηn+1
, n ∈ N0, (1.34)

where C(δ0) is a closed contour on the complex plane C encircling the origin 0 once in the positive
direction.

Lemma 1.1 The functions {mn(t, x)}n∈N0
satisfy the following.

(i) They are monic polynomials of degrees n ∈ N0 with time-dependent coefficients:

mn(t, x) = xn +

n−1∑

k=0

c(k)n (t)xk, t ≥ 0.

(ii) For 0 ≤ k ≤ n− 1, c
(k)
n (0) = 0. That is,

mn(0, x) = xn, n ∈ N0.

(iii) If we set x = B(t), they provide martingales:

E[mn(t, B(t))|Fs] = mn(s,B(s)), 0 ≤ s ≤ t, n ∈ N0. (1.35)

We call {mn(t, x)}n∈N0
the fundamental martingale polynomials associated with BM [30].

For n = 2, (1.33) gives H2(x) = 4x2 − 2, and then m2(t, x) = x2 − t by (1.32). We already proved
in (1.8) that m2(t, B(t)) = B(t)2 − t is a martingale.

The Fourier transformation of Gα(t, x) with respect to the parameter α ∈ R is calculated as

Ĝw(t, x) :=

∫ ∞

−∞

e−
√
−1αw

2π
Gα(t, x)dα =

e−(
√
−1x+w)2/2t

√
2πt

. (1.36)
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Owing to the factor e−w2/2t in Ĝw(t, x), the following calculations are justified,

Gα(t, x) =

∫ ∞

−∞
e
√
−1αwĜw(t, x)dw =

∞∑

n=0

αn

n!

∫ ∞

−∞
(
√
−1w)nĜw(t, x)dw, (1.37)

which proves the integral representation of mn(t, x),

mn(t, x) =

∫ ∞

−∞
(
√
−1w)nĜw(t, x)dw

=

∫ ∞

−∞
(
√
−1w)n

e−(
√
−1x+w)2/2t

√
2πt

dw, t ≥ 0, n ∈ N0. (1.38)

We define this type of integral transformation of a function f as

I[f(W )|(t, x)] =

∫ ∞

−∞
f(
√
−1w)Ĝw(t, x)dw. (1.39)

Then the above results are written as

mn(t, x) = I[W n|(t, x)], t ≥ 0, n ∈ N0. (1.40)

1.4 Bessel processes (BESD)

1.4.1 Radial part of D-dimensional BM

Let D ∈ N denote the spatial dimension. For D ≥ 2, the D-dimensional BM in RD starting from
the position x = (x1, . . . , xD) ∈ RD is defined by the D-dimensional vector-valued diffusion process,

Bx(t) = (Bx1

1 (t), Bx2

2 (t), . . . , BxD
D (t)), t ≥ 0, (1.41)

where
Bxi

i (t) := xi +Bi(t), t ≥ 0, i = 1, . . . ,D

are independent one-dimensional BMs starting from xi ∈ R.
The D-dimensional Bessel process is defined as the absolute value (i.e., the radial coordinate)

of the D-dimensional Brownian motion,

Rx(t) := |Bx(t)|
=

√
Bx1

1 (t)2 + · · · +BxD
D (t)2, t ≥ 0, (1.42)

where the initial value is given by Rx(0) = x = |x| =
√
x21 + · · · + x2D ≥ 0. By definition Rx(t) is

nonnegative, Rx(t) ∈ R+∪{0}, where R+ := {x ∈ R : x > 0}. We will abbreviate theD-dimensional
Bessel process to BESD.

By this definition, Rx(t) is a functional of D-tuples of diffusion processes {Bxi
i (t)}Di=1, t ≥ 0.

Now we apply Itô’s formula (1.19) to BESD (1.42). Assume x = |x| > 0. In this case

Rx(t) = F (Bx(t)), t ≥ 0 with F (y) =

√√√√
D∑

i=1

y2i . (1.43)
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We see that
∂F

∂t
= 0,

∂F

∂yi
=
yi
F
,

∂2F

∂yi∂yj
=
δij
F

− yiyj
F 3

, 1 ≤ i, j ≤ D.

From (1.18), we have d〈Bxi
i , B

xj

j 〉t = 〈dBxi
i , dB

xj

j 〉t = δijdt, 1 ≤ i, j ≤ D, t ≥ 0. Then, the second
term of (1.19) for BESD becomes

1

2

∑

1≤i,j≤D

{
δij

F (Bx(t))
−
Bxi

i (t)B
xj

j (t)

F (Bx(t))3

}
δijdt =

D − 1

2

1

F (Bx(t))
dt =

D − 1

2

dt

Rx(t)
.

On the other hand, the first term of (1.19) for BESD is

1

Rx(t)

D∑

i=1

Bxi
i (t)dBxi

i (t). (1.44)

It seems to be complicated, but the quadratic variation is calculated as

〈
1

Rx

D∑

i=1

Bxi
i dB

xi
i ,

1

Rx

D∑

j=1

B
xj

j dB
xj

j

〉

t

=
1

Rx(t)2

D∑

i=1

D∑

j=1

Bxi
i (t)B

xj

j (t)〈dBxi
i , dB

xj

j 〉t

=
1

Rx(t)2

D∑

i=1

D∑

j=1

Bxi
i (t)B

xj

j (t)δijdt = dt,

where the independence of BMs (1.18) and the definition, Rx(t)2 =
∑D

i=1B
xi
i (t)2, have been used.

That is, (1.44) is equivalent in probability law with an infinitesimal increment of a diffusion process
with quadratic variation dt. Then, by introducing a BM, Bx(t), t ≥ 0, which is different from
Bxi

i (t), t ≥ 0, xi ∈ R, i = 1, 2, . . . ,D and is started at x = |x| > 0, (1.44) is identified with
dBx(t), t ≥ 0. Hence we have obtained the following equation for BESD,

dRx(t) = dBx(t) +
D − 1

2

dt

Rx(t)
, x > 0, 0 ≤ t < T x, (1.45)

where T x = inf{t > 0 : Rx(t) = 0}.
The first term of RHS, dBx(t), denotes the infinitesimal increment of BM starting from x > 0

at time t = 0. This martingale term gives randomness to the motion. On the other hand, if D > 1,
for dt > 0, the second term in RHS of (1.45) is positive definite. It means that there is a drift to
increase the value of Rx(t). This drift term is increasing in D and decreasing in Rx(t). Since as
Rx(t) ↓ 0, the drift term ↑ ∞, it seems that a ‘repulsive force’ is acting to the D-dimensional BM,
Bx(t), |x| > 0 to keep the distance from the origin be positive, Rx(t) = |Bx(t)| > 0 and avoid
a collision of the Brownian particle with the origin. A differential equation such as (1.45), which
involves a random fluctuation term and a drift term is called a stochastic differential equation
(SDE).

The following equivalence in probability law is established for arbitrary x > 0,
(

1

x
Rx(x2t)

)

t≥0

(law)
= (R1(t))t≥0. (1.46)

It inherits (1.4) and is called the scaling property of the Bessel process.
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The SDE for BESD is given by the equation (1.20) with σ(x) := 1 and b(x) = (D − 1)/(2x).
Then the generator of BESD is obtained as

L
D =

1

2

∂2

∂x2
+
D − 1

2x

∂

∂x
. (1.47)

Let pD(t − s, y|x) be the transition probability density of BESD from x at times s ≥ 0 to y
at times t ≥ s. For any t ≥ s, y ∈ R+, pD(t − s, y|x), x > 0 solves (1.26) with (1.47) under the
condition lims↑t pD(t− s, y|x) = δ(x− y). In other words, pD(t, y|x) solves

∂

∂t
pD(t, y|x) = LDpD(t, y|x) (1.48)

under the initial condition pD(0, y|x) = δ(x−y), which is called the backward Kolmogorov equation
for BESD.

Let Iν(z) be the modified Bessel function of the first kind defined by

Iν(z) =

∞∑

n=0

1

Γ(n+ 1)Γ(n + 1 + ν)

(z
2

)2n+ν
(1.49)

with the gamma function

Γ(z) =

∫ ∞

0
e−uuz−1du, Re z > 0. (1.50)

The function Iν(z) solves the Bessel differential equation

d2w

dz2
+

1

z

dw

dz
−
(

1 +
ν2

z2

)
w = 0. (1.51)

Then we can show that

pD(t, y|x) =





1

t

yν+1

xν
e−(x2+y2)/2tIν

(xy
t

)
, t > 0, x > 0, y ≥ 0,

y2ν+1

2νtν+1Γ(ν + 1)
e−y2/2t, t > 0, x = 0, y ≥ 0

δ(y − x), t = 0, x, y ≥ 0,

(1.52)

where the index ν is specified by the dimension D as

ν =
D − 2

2
⇐⇒ D = 2(ν + 1). (1.53)

This fact that pD(t, y|x) is expressed by using Iν(z) gives the reason why the process Rx(t) is called
the Bessel process.

1.4.2 BES3 and absorbing BM

When D = 3, ν = 1/2 by (1.53), and we can use the equality I1/2(z) =
√

2/πz sinh z = (ez −
e−z)/

√
2πz. Then (1.52) gives

p3(t, y|x) =
y

x

{
p(t, y|x) − p(t, y| − x)

}
(1.54)
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Figure 1: One realization of a Brownian path from x > 0 to y > 0 is represented by a red curve
and denoted by path A, which visits the nonpositive region R−∪{0}, where R− := {x ∈ R : x < 0}.
The first time the path A hits the origin is denoted by τ . Path B, which is represented by a black
curve, is a mirror image of path A with respect to the origin x = 0, which is running from −x < 0
to −y < 0. The path C (blue curve) is then defined as the concatenation of the part of path B
from time zero up to time τ and the part of path A after τ such that it runs from −x < 0 to
y > 0. By the reflection principle of BM (1.5) applied at time τ , we see that there exists a bijection
between path A and path C, which have the same probability weight as Brownian paths. Since the
Brownian path A contributes to p(t, y|x) and the Brownian path C contributes to p(t, y| −x), such
a path from x > 0 to y > 0 that visits R− is cancelled in qabs(t, y|x) given by (1.55). In Fig.1.4.2
(b), a path from x > 0 to y > 0 which stays in the positive region R+ is considered (path A).
In this case there is no such a path that perfectly cancels the contribution of path A to (1.55) as
path B in the case (a). In summary, qabs(t, y|x) = p(t, y|x) − p(t, y| − x) gives the total weight of
Brownian paths which do not hit the origin.

for t > 0, x > 0, y ≥ 0, where p(t, y|x) is the transition probability density of BM started at x given
by (1.1). If we put

qabs(t, y|x) = p(t, y|x) − p(t, y| − x), (1.55)

we see that qabs(t, 0|x) = 0 for any x > 0, since the transition probability density of BM, p(t, y|x),
is an even function of y − x.

We consider the situation where an absorbing wall is put at the origin and, if the Brownian
particle starting from x > 0 arrives at the origin, it is absorbed there and the motion is stopped.
Such a process is called the absorbing Brownian motion in R+. Its transition probability
density is given by qabs.

By absorption, the total mass of paths from x > 0 to y > 0 is then reduced, if we compare the
original BM and the absorbing Brownian motion in R+. The factor y/x appearing in the transition
probability density (1.54) of BES3 is for renormalization so that

∫

R+

p3(t, y|x)dy = 1, ∀t > 0, ∀x > 0. (1.56)
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We regard this renormalization procedure from qabs to p3 as a transformation. Since

h1(x) = x (1.57)

is a one-dimensional harmonic function in a rather trivial sense

∆(1)h1(x) :=
d2x

dx2
= 0,

we say that the BES3 is a harmonic transformation (h-transformation) of the one-dimensional
absorbing BM in the sense of Doob. This implies the following equivalence.

BES3 ⇐⇒ one-dimensional Brownian motion conditioned to stay positive

⇐⇒ h-transform of absorbing BM in R+

Let Ex
BES3

denote the expectation with respect to BES3, (R(t))t≥0, started at x ∈ R+. For an
independent BM, (B(t))t≥0 started at the same point x ∈ R+, let τ = inf{t > 0 : B(t) = 0}. Then
the above equivalence is written as follows; for any Ft-measurable bounded function F , t ≥ 0,

Ex
BES3 [F (R(t))] = Ex

[
F (B(t))1(τ>t)

B(t)

x

]

= Ex

[
F (B(t))1(τ>t)

h1(B(t)

h1(x)

]
, t ≥ 0, (1.58)

where Ex is an expectation with respect to BM started at x ∈ R+. If F is an even function;
F (−x) = F (x), then the above gives

Ex
BES3 [F (R(t))] = Ex

[
F (B(t))

h1(B(t))

h1(x)

]
, t ≥ 0, (1.59)

since by the reflection principle of BM (1.5), all contribution from paths {ω : τ ≤ t} should be
canceled out.

Here we emphasize the obvious fact that p3(t, 0|x) = 0,∀ x > 0. It implies that BES3 does not
visit the origin. When D = 3, the outward drift is strong enough to avoid any visit to the origin.
Moreover, we can prove that for any x > 0, Rx(t) → ∞ as t → ∞ with probability 1 and we say
the process is transient (see Theorem 1.2 (ii) below).

1.4.3 Critical dimension Dc = 2

Originally, the Bessel process was defined by (1.42) for D ∈ N. We find that, however, the modified
Bessel function (1.49) is an analytic function of ν for all values of ν. So we will be able to define
the Bessel process for any value of dimension D ≥ 1 as a diffusion process in R+ such that the
transition probability density function is given by (1.52), where the index ν ≥ −1/2 is determined
by (1.53) for each value of D ≥ 1.

For BESD starting from x > 0, denote its first visiting time at the origin by

T x = inf{t > 0 : Rx(t) = 0}. (1.60)

The following theorem is proved (see, for instance, [31]).
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Theorem 1.2 (i) D ≥ 2 =⇒ T x = ∞,∀ x > 0, with probability 1.

(ii) D > 2 =⇒ lim
t→∞

Rx(t) = ∞, ∀x > 0, with probability 1, i.e. the process is transient.

(iii) D = 2 =⇒ inf
t>0

Rx(t) = 0, ∀x > 0, with probability 1D

That is, BES(2) starting from x > 0 does not visit the origin, but it can visit any neighborhood
of the origin.

(iv) 1 ≤ D < 2 =⇒ T x <∞, ∀x > 0, with probability 1, i.e. the process is recurrent.

1.4.4 Bessel flow and another critical dimension Dc = 3/2

Theorem 1.2 states that we have a critical dimension,

Dc = 2,

for competition between the two effects acting the Bessel process, the ‘random force’ (the martingale
term) and the ‘entropy force’ (the outward drift term) in (1.45): when D > Dc, the latter dominates
the former and the process becomes transient, and when D < Dc, the former is relevant and
recurrence to the origin of the process is realized frequently.

Here we show that there is another critical dimension [47],

Dc =
3

2
.

In order to characterize the transition at Dc, we have to investigate the dependence of the behavior
of Rx(t) on its initial value, x > 0. We call the one-parameter family {Rx(t) : t ≥ 0}x>0 the Bessel
flow for each fixed D > 1.

For 0 < x < y, we trace the motions of two BESD’s starting from x and y by solving (1.45)
using the common BM, B(t), t ≥ 0,

Rx(t) = x+B(t) +
D − 1

2

∫ t

0

ds

Rx(s)
,

Ry(t) = y +B(t) +
D − 1

2

∫ t

0

ds

Ry(s)
, 0 ≤ t < T x. (1.61)

We will see that

x < y =⇒ Rx(t) < Ry(t), 0 ≤ t < T x with probability 1

=⇒ T x ≤ T y with probability 1.

The interesting fact is that in the intermediate fractional dimensions, Dc < D < Dc, it is
possible to have a situation where T x = T y even for x < y.

Theorem 1.3 For 0 < x < y <∞,

(i) 1 ≤ D ≤ 3/2 =⇒ T x < T y with probability 1.

(ii) 3/2 < D < 2 =⇒ P[T x = T y] > 0.
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+

time

x
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y

Figure 2: In the intermediate fractional dimensions, 3/2 < D < 2, there is a positive probability
that two Bessel processes starting from different initial positions, 0 < x < y < ∞, return to the
origin simultaneously, T x = T y.

1.5 Hermitian-matrix-valued BM and the Dyson model with parameter β (DYSβ)

1.5.1 Multivariate extensions of Bessel processes

Here we consider the stochastic motion of two particles (X1(t),X2(t)) in one dimension R satisfying
the following SDEs,

dX1(t) = dB1(t) +
β

2

dt

X1(t) −X2(t)
,

dX2(t) = dB2(t) +
β

2

dt

X2(t) −X1(t)
, (1.62)

with the initial condition x1 = X1(0) < x2 = X2(0) for 0 ≤ t < inf{t > 0 : X1(t) = X2(t)},
where B1(t) and B2(t), t ≥ 0 are independent BMs and β > 0 is the ‘coupling constant’ of
the two particles. The second terms in (1.62) represent the repulsive force acting between two
particles, which is proportional to the inverse of the distance between them, X2(t) −X1(t). Since
it is a central force (i.e., depending only on distance, and thus symmetric for two particles), the
‘center of mass’ Xc(t) := (X2(t) + X1(t))/2 is just a time change of BM; we can calculate the
quadratic variation as d〈Xc,Xc〉t = 〈dXc, dXc〉t = 〈(dB1 + dB2)/2, (dB1 + dB2)/2〉t = dt/2, since
d〈B1, B1〉t = 〈dB1, dB1〉t = dt, d〈B2, B2〉t = 〈dB2, dB2〉t = dt and d〈B1, B2〉t = 〈dB1, dB2〉t = 0.
Then

(Xc(t))t≥0
(law)
=

(
1√
2
B(t)

)

t≥0

(law)
= (B(t/2))t≥0,

where B(t) is a BM independent from B1(t) and B2(t). On the other hand, if we define the relative
coordinate by Xr(t) := (X2(t) −X1(t))/

√
2, it satisfies the SDE

dXr(t) = dB̃(t) +
β

2

dt

Xr(t)
(1.63)
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for 0 < t < inf{t > 0 : Xr(t) = 0}, where B̃(t), t ≥ 0 is a BM independent from B1(t), B2(t), B(t),
t ≥ 0. It is nothing but the SDE for BESD with D = β + 1:

(Xr(t))t≥0
(law)
= (R(t))t≥0, D = β + 1. (1.64)

Now we consider the following N -particle systems of interacting Brownian motions in R as
a solution X(t) = (X1(t),X2(t), . . . ,XN (t)) of the following system of SDEs: with β > 0 and the
condition x1 < x2 < · · · < xN for initial positions xi = Xi(0), i = 1, . . . , N ,

dXi(t) = dBi(t) +
β

2

∑

1≤j≤N,
j 6=i

dt

Xi(t) −Xj(t)
, t ∈ [0, Tx), i = 1, . . . , N, (1.65)

where {Bi(t)}Ni=1, t ≥ 0 are independent BMs and

Tx

ij = inf{t > 0 : Xi(t) = Xj(t)}, 1 ≤ i < j ≤ N,

Tx = min
1≤i<j≤N

Tx

ij .

It is usually called Dyson’s Brownian motion model with parameter β. But in this lecture
we simply call it the Dyson model with parameter β and denoted by DYSβ .

As shown above, in the case where N = 2, DYSβ is a composition of a BM (the center of mass)
and a BES(β+1) (the relative coordinate). In this sense, DYSβ can be regarded as a multivariate
(multidimensional) extension of BES(β+1), β > 0.

We can prove that, for any x ∈ RN with x1 < x2 < · · · < xN , Tx < ∞ if β < 1, and Tx = ∞
if β ≥ 1 [65, 23]. The critical value βc = 1 seems to correspond to Dc = βc + 1 = 2 of BESD.
Together with (1.64), this observation suggests the following relation between parameters,

D = β + 1 ⇐⇒ β = D − 1. (1.66)

In particular, we study the special case of Dyson’s BM model with parameter β = 2, DYS2

As shown above, the case where β = 2 corresponds to a BESD with D = 3. In Section 1.4, we
have shown that BES3 has two aspects: [Aspect 1] as a radial coordinate of three-dimensional
Brownian motion, which was used to define the Bessel process in Section 1.4.1, and [Aspect 2] as
a one-dimensional Brownian motion conditioned to stay positive as explained in Section 1.4.2. We
show that the Dyson model inherits these two aspects from BES3 [31].

1.5.2 DYS2 realized as eigenvalue process of Hermitian-matrix-valued BM

Dyson [19] introduced the processes (1.65) with β = 1, 2, and 4 as the eigenvalue processes of
matrix-valued stochastic processes in order to realize the point processes in equilibrium called the
Gaussian orthogonal ensemble (GOE), the Gaussian unitary ensemble (GUE), and the Gaussian
symplectic ensemble (GSE), which are extensively studied in random matrix theory [53, 21, 2, 1].

For β = 2 with given N ∈ N, we prepare N -tuples of BMs {Bxi
ii (t)}Ni=1, t ≥ 0, each of which

starts from xi ∈ R, and N(N − 1)/2-tuples of pairs of BMs {Bij(t), B̃ij(t)}1≤i<j≤N , t ≥ 0, starting
from the origin. Here, there is a total of N +2×N(N −1)/2 = N2 BMs, each of them independent
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from the rest. Then consider an N ×N Hermitian-matrix-valued Brownian motion,

B
x(t) =




Bx1

11 (t)
B12(t) +

√
−1B̃12(t)√
2

· · · B1N (t) +
√
−1B̃1N (t)√
2

B12(t) −
√
−1B̃12(t)√
2

Bx2

22 (t) · · · B2N (t) +
√
−1B̃2N (t)√
2

· · · · · · · · · · · ·
B1N (t) −

√
−1B̃1N (t)√
2

B2N (t) −
√
−1B̃2N (t)√
2

· · · BxN
NN (t)




.

(1.67)
Remember that when we introduced BESD in Section 1.4, we considered the D-dimensional

vector-valued Brownian motion in RN , (1.41), by preparing D-tuples of independent BMs for its
elements. Here we consider the space of N ×N Hermitian matrices denoted by H(N). Since the
dimension of this space is dimH(N) = N2, we need N2 independent BMs for elements to describe
a Brownian motion in this space H(N). Hence we can regard the process Bx(t), t ≥ 0 defined by
(1.67) as a ‘Brownian motion in H(N)’. By definition, the initial state of this Brownian motion is
the diagonal matrix

B
x(0) = diag(x1, x2, . . . , xN ). (1.68)

We assume x1 ≤ x2 ≤ · · · ≤ xN .
Corresponding to calculating the absolute value (1.42) of Bx(t), by which BESD was introduced,

here we calculate the eigenvalues of Bx(t). For any t ≥ 0, there is a family of N×N unitary matrices
{U(t)} which diagonalizes Bx(t),

U
∗(t)Bx(t)U(t) = diag(λ1(t), . . . , λN (t)) =: Λ(t), t ≥ 0.

Here for a matrix M = (Mij)1≤i,j≤N , we define its Hermitian conjugate by M∗ = (Mji)1≤i,j≤N ,
where z denotes the complex conjugate of z ∈ C. Consider a subspace of RN defined by

WN := {x = (x1, x2, . . . , xN ) ∈ RN : x1 < x2 < · · · < xN}, (1.69)

which is called the Weyl chamber in representation theory. If we impose the condition (λi(t))
N
i=1 ∈

WN , U(t) is uniquely determined at each time t ≥ 0.
The following theorem is established.

Theorem 1.4 The eigenvalue process (λi(t))
N
i=1, t ≥ 0 of the Hermitian-matrix-valued Brown-

ian motion (1.67) started at (1.68) satisfies the SDEs,

dλi(t) = dBxi
i (t) +

∑

1≤j≤N,
j 6=i

dt

λi(t) − λj(t)
, t ≥ 0, i = 1, . . . , N, (1.70)

where (Bxi
i (t))Ni=1, t ≥ 0 are independent BMs different from the N2-tuples of BMs used to define

Bx(t) in (1.67). That is, this process realizes DYS2.

The correspondence between BES3 and DYS2 in terms of equivalent processes is summarized as
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follows.

[Aspect 1]
radial coordinate of

BES3 ⇐⇒ D = 3 vector-valued
Brownian motion

eigenvalue process of
N -particle DYS2 ⇐⇒ N ×N Hermitian-matrix-valued

Brownian motion

Dyson derived (1.70) by applying the perturbation theory in quantum mechanics [19]. Since
(λi(t))

N
i=1, t ≥ 0 are functionals of {Bxi

ii (t), Bij(t), B̃ij(t)}1≤i<j≤N , t ≥ 0, we can use Itô’s formula
to prove Theorem 1.4. A key point to prove the theorem is applying Itô’s rule for differentiating
the product of matrix-valued semi-martingales : If X(t) = (Xij(t)) and Y(t) = (Yij(t)) are
N ×N matrices with semi-martingale elements, then

d(X∗(t)Y(t)) = dX∗(t)Y(t) + X
∗(t)dY(t) + 〈dX∗, dY〉t, t ≥ 0, (1.71)

where 〈dX∗, dY〉t denotes an N ×N matrix-valued process, whose (i, j)-th element is given by the
finite-variation process

∑
k〈dXki, dYkj〉t, 1 ≤ i, j ≤ N .

1.6 Determinantal martingale representation (DMR) of DYS2

1.6.1 General formula

Denote the N -dimensional Laplacian with respect to the variables x = (x1, . . . , xN ) by

∆(N) :=

N∑

i=1

∂2

∂x2i
.

We set
hN (x) :=

∏

1≤i<j≤N

(xj − xi) = det
1≤i,j≤N

[xi−1
j ], (1.72)

where the determinant appearing here is called the Vandermonde determinant. As we have seen
in 1.4.2, h1(x) := x is a positive harmonic function in R+ = (0,∞) which satisfies the boundary
condition h1(0) = 0. Similarly, we can see that

∆(N)hN (x) = 0. (1.73)

and
hN (x) > 0, if x ∈ WN , and hN (x) = 0, if x ∈ ∂WN . (1.74)

We have another correspondence between BES3 and DYS2.

[Aspect 2]
BES3 ⇐⇒ h-transformation by h1 of absorbing BM in R+

⇐⇒ BM conditioned to stay positive

N -particle DYS2 ⇐⇒ h-transformation by hN of absorbing BM in WN

⇐⇒ noncolliding BM
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As [Aspect 2], the Dyson model is constructed as the h-transformation of the absorbing
Brownian motion in WN . Therefore, at any positive time t > 0 the configuration is an element of
WN ,

X(t) = (X1(t),X2(t), . . . ,XN (t)) ∈ WN t > 0, (1.75)

and hence there are no multiple points at which coincidence of particle positions, Xi(t) = Xj(t), i 6=
j, occurs. We can consider, however, the Dyson model starting from initial configurations with
multiple points. In order to describe configurations with multiple points, we represent each particle
configuration by a sum of delta measures in the form

ξ(·) =
∑

i∈I
δxi(·) (1.76)

with a sequence of points in R,x = (xi)i∈I, where I is a countable index set. Here for y ∈ R, δy(·)
denotes the delta measure such that δy({x}) = 1 for x = y and δy({x}) = 0 otherwise. Then, for
(1.76) and A ⊂ R, ξ(A) =

∫
A ξ(dx) =

∑
i∈I:xi∈A 1 = ♯{xi, xi ∈ A}.

The measures of the form (1.76) satisfying the condition ξ(K) < ∞ for any compact subset
K ⊂ R are called the nonnegative integer-valued Radon measures on R and we denote the
space they form by Conf(R);

Conf(R) :=

{
ξ =

∑

i∈I
δxi : xi ∈ R, ξ(K) <∞ for all bounded set K ⊂ R

}
. (1.77)

The set of configurations without multiple points is denoted by

Conf0(R) := {ξ ∈ Conf(R) : ξ({x}) ≤ 1,∀ x ∈ R}.

There is a trivial correspondence between WN and Conf0(R). We call x ∈ RN a labeled config-
uration and ξ ∈ Conf(R) an unlabeled configuration.

We introduce a sequence of independent BMs, Bx(t) = (Bxi
i (t))i∈I, t ≥ 0, in (Ω,F ,Px) with

expectation written as Ex.
In this section we assume that ξ =

∑
i∈I δxi ∈ Conf0(R), ξ(R) = N ∈ N and consider DYS2 as

an Conf0(R)-valued diffusion process,

Ξ(t, ·) =

N∑

i=1

δXi(t)(·), t ≥ 0, (1.78)

starting from the initial configuration ξ =
∑N

i=1 δxi , where X(t) = (X1(t), · · · ,XN (t)) is the
solution of (1.65) with β = 2 under the initial configuration x = (x1, . . . , xN ) ∈ WN . We write
the process as (Ξ,Pξ) and express the expectation with respect to the probability law Pξ of the
Dyson model by Eξ[ · ]. We introduce a filtration {(FΞ)t}t∈[0,∞) on the space of continuous paths
C([0,∞) → Conf(R)) defined by (FΞ)t = σ(Ξ(s), s ∈ [0, t]), where σ denotes the smallest σ-field.

[Aspect 2] of the Dyson model is expressed by the following equality: for any (FΞ)t-measurable
bounded function F , 0 ≤ t ≤ T <∞,

Eξ[F (Ξ(·))] = Ex

[
F

(
N∑

i=1

δBi(·)

)
1(τ>T )

hN (B(T ))

hN (x)

]
, (1.79)
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where
τ := inf{t > 0 : Bx(t) /∈ WN} (1.80)

and we have assumed the relations ξ =
∑N

i=1 δxi ∈ Conf0(R),x = (x1, . . . , xN ) ∈ WN and (1.78).
In the following lemma, we claim that even if we delete the indicator 1(τ>T ) in RHS of (1.79),

still the equality holds. It is a multivariate extension of the claim by which we replaced (1.58) by
(1.59) in Section 1.4.2.

Lemma 1.5 Assume that ξ =
∑N

i=1 δxi ∈ Conf0(R), x = (x1, . . . , xN ) ∈ WN . For any (FΞ)t-
measurable bounded function F , 0 ≤ t ≤ T <∞,

Eξ[F (Ξ(·))] = Ex

[
F

(
N∑

i=1

δBi(·)

)
hN (B(T ))

hN (x)

]
. (1.81)

In Section 1.3, we introduced the fundamental martingale polynomials associated with BM,
{mn(t, x)}n∈N0

. Since they are monic polynomials, we can prove the equalities

hN (y)

hN (x)
=

1

hN (x)
det

1≤i,j≤N
[yi−1

j ]

=
1

hN (x)
det

1≤i,j≤N
[mi−1(t, yj)] (1.82)

for an arbitrary t ∈ [0,∞). This implies that (hN (B(t))/hN (x))t≥0 is a martingale.
Here we extend the integral transformation defined by (1.39) with (1.36) in Section 1.3 to a

linear integral transformation of multivariate functions as follows. When F (i)(x) =
∏N

j=1 f
(i)
j (xj),

i = 1, 2 are given for x = (x1, . . . , xN ) ∈ RN , then we define

I
[
F (i)(W)

∣∣{(tℓ, xℓ)}Nℓ=1

]
:=

N∏

j=1

I
[
f
(i)
j (Wj)

∣∣∣ (tj , xj)
]
, i = 1, 2,

and

I
[
c1F

(1)(W) + c2F
(2)(W)

∣∣{(tℓ, xℓ)}Nℓ=1

]

:= c1I
[
F (1)(W)

∣∣{(tℓ, xℓ)}Nℓ=1

]
+ c2I

[
F (2)(W)

∣∣{(tℓ, xℓ)}Nℓ=1

]
,

c1, c2 ∈ C, for 0 < ti < ∞, i = 1, . . . , N , where W = (W1, . . . ,WN ) ∈ RN . In particular, if
tℓ = t, 1 ≤ ∀ℓ ≤ N , we write I[ · |{(tℓ, xℓ)}Nℓ=1] simply as I[ · |(t,x)] with x = (x1, . . . , xN ). Then
(1.82) is further rewritten as

hN (y)

hN (x)
=

1

hN (x)
det

1≤i,j≤N

[
I[(Wj)

i−1|(t, yj)]
]

= I
[

1

hN (x)
det

1≤i,j≤N
[(Wj)

i−1]

∣∣∣∣ (t,y)

]

= I
[
hN (W)

hN (x)

∣∣∣∣ (t,y)

]
, (1.83)

where the multilinearity of determinants has been used.
Now we use the following determinant identity.
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Lemma 1.6 For x = (x1, . . . , xN ) ∈ WN , z = (z1, . . . , zN ) ∈ CN ,

hN (z)

hN (x)
= det

1≤i,j≤N

[
Φxi
ξ (zj)

]
, (1.84)

where

Φu
ξ (z) =

∏

1≤k≤N,
xk 6=u

z − xk
u− xk

, for ξ =

N∑

i=1

δxi ∈ Conf0(R), z, u ∈ C. (1.85)

Then (1.83) is written as

hN (y)

hN (x)
= I

[
det

1≤i,j≤N
[Φxi

ξ (Wj)]
∣∣∣ (t,y)

]

= det
1≤i,j≤N

[Mxi
ξ (t, yj)], (1.86)

where
Mx

ξ (t, y) := I[Φx
ξ (W )|(t, y)], x, y ∈ R, t ≥ 0. (1.87)

Proposition 1.7 Assume that ξ =
∑N

i=1 δxi ∈ Conf0(R). The following are satisfied by (1.87).

(i) (Mxi
ξ (t, B(t)))t≥0, i = 1, . . . N are continuous martingales.

(ii) For any time t ≥ 0, Mxi
ξ (t, y), i = 1, . . . , N are linearly independent functions of y.

(iii) For 1 ≤ i, j ≤ N , limt↓0 Exi [Mxj

ξ (t, B(t))] = δij .

Then for any (FΞ)t-measurable bounded function F , 0 ≤ t ≤ T <∞, the equality

Eξ[F (Ξ(·))] = Ex

[
F

(
N∑

i=1

δBi(·)

)
Dξ(T,B(T ))

]
(1.88)

holds, where

Dξ(t,y) = det
1≤i,j≤N

[Myj
ξ (t, yi)], y = (y1, . . . , yN ) ∈ WN , t ≥ 0. (1.89)

We remark that Dξ(t,B(t)), t ≥ 0 is indeed a continuous martingale by part (i) and is not
identically zero by part (ii) of Proposition 1.7. We call Dξ(t,B(t)), t ≥ 0 a determinantal
martingale and the equality (1.88) the determinantal martingale representation (DMR) of
DYS2 [30].

For n ∈ N, an index set {1, 2, . . . , n} is denoted by In. Fixing N ∈ N with N ′ ∈ IN , we write
J ⊂ IN , ♯J = N ′, if J = {j1, . . . , jN ′}, 1 ≤ j1 < · · · < jN ′ ≤ N . For x = (x1, . . . , xN ) ∈ RN , put
xJ = (xj1 , . . . , xjN′ ). In particular, we write xN ′ = xIN′ , 1 ≤ N ′ ≤ N . (By definition xN = x.)
A collection of all permutations of elements in J is denoted by S(J). In particular, we write
SN ′ = S(IN ′), 1 ≤ N ′ ≤ N .

The following shows the reducibility of the determinantal martingale in the sense that, if we
observe a symmetric function depending on N ′ variables, N ′ ≤ N , then the size of determinantal
martingale can be reduced from N to N ′.
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Lemma 1.8 Assume that ξ =
∑N

i=1 δxi =
∑

i∈IN δxi with x ∈ WN . Let 1 ≤ N ′ ≤ N . For

0 < t ≤ T <∞ and an (FΞ)t-measurable symmetric function FN ′ on RN ′
,

∑

J⊂IN ,♯J=N ′

Ex [FN ′(BJ(t))Dξ(T,B(T ))]

=

∫

WN′

ξ⊗N ′
(dv)Ev [FN ′(BN ′(t))Dξ(T,BN ′(T ))] . (1.90)

1.6.2 Time-dependent density function ρξ(t, x)

The density function at a single time for (Ξ,Pξ), ξ ∈ Conf0(R) is denoted by ρξ(t, x). It is defined
as a continuous function of x ∈ R for 0 ≤ t ≤ T <∞ such that for any test function, χ ∈ Cc(R),

Eξ

[∫

R

χ(x)Ξ(t, dx)

]
=

∫

R

dxχ(x)ρξ(t, x). (1.91)

The test function χ is symmetrized as g(x) =
N∑

i=1

χ(xi), which is applied as F to the DMR (1.88),

and we obtain the equality

Eξ

[
N∑

i=1

χ(Xi(t))

]
= Ex

[
N∑

i=1

χ(Bi(t))Dξ(T,B(T ))

]
, 0 ≤ t ≤ T <∞. (1.92)

The LHS of (1.92) gives

Eξ

[
N∑

i=1

χ(Xi(t))

]
= Eξ

[∫

R

χ(x)Ξ(t, dx)

]

by (1.78). On the other hand, RHS of (1.92) is reduced by Lemma 1.8 as

N∑

i=1

Ex[χ(Bi(t))Dξ(T,B(T ))] =

∫

R

ξ(dv)Ev [χ(B(t))Mv
ξ (t, B(t))]

=

∫

R

ξ(dv)

∫

R

dxχ(x)p(t, x|v)Mv
ξ (t, x).

By Fubini’s theorem, we can rewrite it as
∫
R
dxχ(x)Gξ(t, x; t, x), where

Gξ(s, x; t, y) =

∫

R

ξ(dv)p(s, x|v)Mv
ξ (t, y). (1.93)

Then (1.91) gives
ρξ(t, x) = Gξ(t, x; t, x), x ∈ R, t ≥ 0. (1.94)
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1.6.3 Two-time correlation function ρξ(s, x; t, y)

For 0 ≤ t1 < t2 ≤ T <∞, set

g1(x) =
N∑

i=1

χ1(xi), g2(x) =
N∑

i=1

χ2(xi),

where χm ∈ Cc(R),m = 1, 2, and put

F (Ξ(·)) =
2∏

m=1

gm(X(tm)).

If we apply this to DMR, (1.88), we obtain the equality

Eξ




N∑

i=1

N∑

j=1

χ1(Xi(t1))χ2(Xj(t2))




= Ex




N∑

i=1

N∑

j=1

χ1(Bi(t1))χ2(Bj(t2))Dξ(T,B(T ))


, 0 ≤ t ≤ T <∞. (1.95)

The LHS of (1.95) defines the two-time correlation function ρξ(s, x; t, y) as

Eξ




N∑

i=1

N∑

j=1

χ1(Xi(t1))χ2(Xj(t2))


 =

∫

R2

dx1dx2 χ1(x1)χ2(x2)ρξ(t1, x1; t2, x2). (1.96)

On the other hand, RHS of (1.95) gives

N∑

i=1

N∑

j=1

Ex[χ1(Bi(t1))χ2(Bj(t2))Dξ(T,B(T ))]

=
∑

1≤i,j≤N,
i 6=j

Ex[χ1(Bi(t1))χ2(Bj(t2))Dξ(T,B(T ))]

+
∑

1≤i≤N

Ex[χ1(Bi(t1))χ2(Bi(t2))Dξ(T,B(T ))].

By the reducibility of DMR given by Lemma 1.8, the last expression becomes

∫

R2

ξ⊗2(dv)

× E(v1,v2)

[
χ1(B1(t1))χ2(B2(t2)) det

(
Mv1

ξ (T,B1(T )) Mv1
ξ (T,B2(T ))

Mv2
ξ (T,B1(T )) Mv2

ξ (T,B2(T ))

)]

+

∫

R

ξ(dv)Ev [χ1(B(t1))χ2(B(t2))Mv
ξ (T,B(T ))]
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If we use the martingale property (i) of Mv
ξ in Proposition 1.7, it is written as

∫

R2

ξ⊗2(dv)

× E(v1,v2)

[
χ1(B1(t1))χ2(B2(t2)) det

(
Mv1

ξ (t1, B1(t1)) Mv1
ξ (t2, B2(t2))

Mv2
ξ (t1, B1(t1)) Mv2

ξ (t2, B2(t2))

)]

+

∫

R

ξ(dv)Ev [χ1(B(t1))χ2(B(t2))Mv
ξ (t2, B(t2))].

By Fubini’s theorem, this is equal to

∫

R2

dx1dx2 χ1(x1)χ2(x2) det

(
Gξ(t1, x1; t1, x1) Gξ(t1, x1; t2, x2)
Gξ(t2, x2; t1, x1) Gξ(t2, x2; t2, x2)

)

+

∫

R2

dx1dx2 χ1(x1)χ2(x2)Gξ(t1, x1; t2, x2)p(t2 − t1, x2|x1)

=

∫

R2

dx1dx2 χ1(x1)χ2(x2)

× det

(
Gξ(t1, x1; t1, x1) Gξ(t1, x1; t2, x2)
Gξ(t2, x2; t1, x1) − p(t2 − t1, x2|x1) Gξ(t2, x2; t2, x2)

)
.

Since this is equal to (1.96), the two-time correlation function is determined as

ρξ(s, x; t, y) = det

(
Kξ(s, x; s, x) Kξ(s, x; t, y)
Kξ(t, y; s, x) Kξ(t, y; t, y)

)
(1.97)

for 0 ≤ s < t <∞, x, y ∈ R, where

Kξ(s, x; t, y) = Gξ(s, x; t, y) − 1(s>t)p(s− t, x|y). (1.98)

1.7 Determinantal stochastic processes (DSPs)

1.7.1 From DMR to DSP

In the previous section, the density function at a single time ρξ(t, x) and the two-time (and two-
point) correlation function ρξ(s, x; t, y) were defined by (1.91) and (1.96), respectively. In order
to give a general definition of spatio-temporal correlation functions here we consider the
Laplace transformations of the multitime joint distribution functions of (Ξ,Pξ). For any
integer M ∈ N, a sequence of times t = (t1, . . . , tM ) ∈ [0,∞)M with 0 ≤ t1 < · · · < tM <∞, and a
sequence of functions f = (ft1 , . . . , ftM ) ∈ Cc(R)M , let

Ψt

ξ[f ] ≡ Eξ

[
exp

{
M∑

m=1

∫

R

ftm(x)Ξ(tm, dx)

}]
. (1.99)

By (1.78), if we set test functions as

χtm(·) = eftm (·) − 1, 1 ≤ m ≤M, (1.100)
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we can rewrite (1.99) in the form

Ψt

ξ[f ] = Eξ

[
M∏

m=1

N∏

i=1

{1 + χtm(Xi(tm))}
]
. (1.101)

We expand this with respect to test functions and define the spatio-temporal correlation functions
{ρξ} as coefficients,

Ψt

ξ[f ] =
∑

0≤Nm≤N,
1≤m≤M

∫
∏M

m=1 WNA
m

M∏

m=1

dx
(m)
Nm

Nm∏

i=1

χtm

(
x
(m)
i

)
ρξ

(
t1,x

(1)
N1

; . . . ; tM ,x
(M)
NM

)
, (1.102)

where x
(m)
Nm

denotes (x
(m)
1 , . . . , x

(m)
Nm

) and dx
(m)
Nm

=
∏Nm

i=1 dx
(m)
i , 1 ≤ m ≤ M . Here the empty

products equal 1 by convention and the term with Nm = 0, 1 ≤ ∀m ≤ M is considered to be 1.
The previous two examples ρξ(t, x) and ρξ(s, x; t, y) are special cases in which we set M = 1, t1 =

t, N1 = 1, x
(1)
1 = x, and M = 2, t1 = s, t2 = t, N1 = N2 = 1, x

(1)
1 = x, x

(2)
1 = y, respectively.

The function Ψt

ξ[f ] is a generating function of correlation functions.
Given an integral kernel, K(s, x; t, y), (s, x), (t, y) ∈ [0,∞) × R, and a sequence of functions

(χt1 , . . . , χtM ) ∈ Cc(R)M , M ∈ N, the Fredholm determinant associated with K and (χtm)Mm=1

is defined as

Det
(s,t)∈{t1,...,tM}2,

(x,y)∈R2

[
δstδx({y}) + K(s, x; t, y)χt(y)

]

=
∑

0≤Nm≤N,
1≤m≤M

∫
∏M

m=1 W
A
Nm

M∏

m=1

dx
(m)
Nm

Nm∏

k=1

χtm

(
x
(m)
k

)
det

1≤i≤Nm,1≤j≤Nn,
1≤m,n≤M

[
K(tm, x

(m)
i ; tn, x

(n)
j )

]
.

(1.103)

Definition 1.9 If any moment generating function (1.99) is given by a Fredholm determinant,
the process (Ξ,Pξ) is said to be a determinantal stochastic process (DSP). In this case all
spatio-temporal correlation functions are given by determinants as

ρξ

(
t1,x

(1)
N1

; . . . ; tM ,x
(M)
NM

)
= det

1≤i≤Nm,1≤j≤Nn,
1≤m,n≤M

[
Kξ(tm, x

(m)
i ; tn, x

(n)
j )

]
, (1.104)

0 ≤ t1 < · · · < tM < ∞, 1 ≤ Nm ≤ N , x
(m)
Nm

∈ RNm, 1 ≤ m ≤ M ∈ N. Here the integral kernel,
Kξ : ([0,∞) × R)2 7→ R, is a function of the initial configuration ξ and is called the correlation
kernel.

Remark 1.10 If the process (Ξ,Pξ) is DSP, then, at each time 0 ≤ t < ∞, all spatial correlation
functions are given by determinants as

ρξ(xN ′) = det
1≤i,j≤N ′

[K(xi, xj)], 1 ≤ N ′ ≤ N, (1.105)
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with K(x, y) = Kξ(t, x; t, y). In general a random integer-valued Radon measure in Conf(R) (resp.
Conf0(R)) is called a point process (resp. simple point process). A simple point process is
said to be a determinantal point process (DPP) (or Fermion point process) with kernel K,
if its spatial correlation functions exist and are given in the form (1.105). When K is symmetric,
i.e., K(x, y) = K(y, x), x, y ∈ R, Soshnikov [81] and Shirai and Takahashi [76, 77, 78] gave sufficient
conditions for K to be a correlation kernel of a determinantal point process. See also [35]. The
notion of DSP given by Definition 1.9 is a dynamical extension of the determinantal point process
[10, 38].

Let Ξ and Ξ̃ be determinantal processes with correlation kernels K and K̃, respectively. If there
is a function G(s, x), which is continuous with respect to x ∈ R for any fixed s ∈ [0,∞), such that

K(s, x; t, y) =
G(s, x)

G(t, y)
K̃(s, x; t, y), (s, x), (t, y) ∈ [0,∞) × R, (1.106)

then we say that Ξ̃ is a gauge transform of Ξ.

Lemma 1.11 Under (1.106),

(Ξ(t))t≥0
(law)
= (Ξ̃(t))t≥0.

In other words, DSP is gauge invariant.

By Proposition 1.7, (1.101) has the DMR

Ψt

ξ[f ] = Ex

[
N∏

m=1

N∏

i=1

{1 + χtm(Bi(tm))}Dξ(T,B(T ))

]
, (1.107)

where T ≥ tM and ξ =
∑N

i=1 δxi . The following equality is established [30].

Lemma 1.12 Let x ∈ WA
N and ξ =

∑N
i=1 δxi . Then for any M ∈ N, 0 ≤ t1 < · · · < tM ≤ T < ∞,

χtm ∈ Cc(R), 1 ≤ m ≤M , the equality

Ex

[
M∏

m=1

N∏

i=1

{1 + χtm(Bi(tm))}Dξ(T,B(T ))

]

= Det
(s,t)∈{t1,...,tM}2,

(x,y)∈R2

[
δstδx({y}) + Kξ(s, x; t, y)χt(y)

]
(1.108)

holds, where Kξ is given by (1.98) with (1.93).

Now we arrive at the following full characterization of DYS2, (Ξ,Pξ).

Theorem 1.13 For any finite and fixed initial configuration without multiple points, that is, for
ξ ∈ Conf0(R), ξ(R) = N ∈ N, DYS2 is determinantal. Its correlation kernel is given by

Kξ(s, x; t, y) = Gξ(s, x; t, y) − 1(s>t)p(s− t, x|y), (s, x), (t, y) ∈ [0,∞) ×R (1.109)

with

Gξ(s, x; t, y) =

∫

R

ξ(dv)p(s, x|v)Mv
ξ (t, y). (1.110)
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1.7.2 Generalization for initial configuration with multiple points

For general ξ =
∑N

i=1 δxi ∈ Conf(R) with ξ(R) = N < ∞, define supp ξ = {x ∈ R : ξ(x) > 0} and
let ξ∗(·) =

∑
v∈supp ξ δv(·). For s ∈ [0,∞), v, x ∈ R, z, ζ ∈ C, let

φvξ((s, x); z, ζ) =
p(s, x|ζ)

p(s, x|v)

1

z − ζ

N∏

i=1

z − xi
ζ − xi

, (1.111)

and

Φv
ξ((s, x); z) =

1

2π
√
−1

∮

C(δv)
dζ φvξ((s, x); z, ζ)

= Res
[
φvξ((s, x); z, ζ); ζ = v

]
, (1.112)

where C(δv) is a closed contour on the complex plane C encircling the point v once in the positive
direction. This function (1.112) is entire with respect to z ∈ C parameterized by (s, x) ∈ [0,∞)×R

in addition to v ∈ C, ξ ∈ Conf(R). Remark that the polynomial function Φu
ξ (z) defined by (1.85)

is parameterized only by u ∈ C and ξ ∈ Conf0(R). Here we start from this entire function and
consider its I-transformation,

Mv
ξ((s, x)|(t, y)) = I

[
Φv
ξ((s, x);W )

∣∣∣(t, y)
]
, (s, x), (t, y) ∈ [0,∞) ×R, (1.113)

which provides a martingale, if we put y = B(t), t ≥ 0. Then it is easy to see that (1.109) with
(1.110) is rewritten as

Kξ(s, x; t, y) =

∫

S
ξ∗(dv)p(s, x|v)Mv

ξ ((s, x)|(t, y)) − 1(s > t)p(s− t, x|y), (1.114)

(s, x), (t, y) ∈ [0,∞) × R.
We note that the kernel (1.114) with (1.113) is bounded and integrable also for ξ ∈ Conf(R) \

Conf0(R). Therefore, the spatio-temporal correlations are given by (1.104) for any 0 ≤ t1 < · · · <
tM <∞,M ∈ N and the finite-dimensional distributions are determined.

Proposition 1.14 Also for ξ ∈ Conf(R)\Conf0(R), the DSPs with the correlation kernels (1.114)
are well-defined.

The complete proof of this proposition was given in Section 4.1 of [39]. See also [60, 61, 83, 62].
The above extension will provide the entrance laws for the processes (Ξ(t), t > 0,Pξ) in the sense
of Section XII.4 in [64].

1.7.3 DSP with extended Hermitian kernel

In order to give an example of Proposition 1.14, here we study the extreme case where all N points
are concentrated on an origin,

ξ = Nδ0 ⇐⇒ ξ∗ = δ0 with ξ({0}) = N. (1.115)
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For (1.115), (1.111) and (1.112) become

φ0Nδ0((s, x); z, ζ) =
p(s, x|ζ)

p(s, x|0)

1

z − ζ

(
z

ζ

)N

=
p(s, x|ζ)

p(s, x|0)

∞∑

ℓ=0

zN−ℓ−1

ζN−ℓ
,

and

Φ0
Nδ0((s, x); z) =

1

p(s, x|0)

∞∑

ℓ=0

zN−ℓ−1 1

2π
√
−1

∮

C(δ0)
dζ

p(s, x|ζ)

ζN−ℓ

=
1

p(s, x|0)

N−1∑

ℓ=0

zN−ℓ−1 1

2π
√
−1

∮

C(δ0)
dζ

p(s, x|ζ)

ζN−ℓ
, (1.116)

since the integrands are holomorphic when ℓ ≥ N .
For BM with the transition probability density (1.1), (1.116) gives

Φ0
Nδ0((s, x); z) =

N−1∑

ℓ=0

zN−ℓ−1 1

2π
√
−1

∮

C(δ0)
dζ

exζ/s−ζ2/2s

ζN−ℓ

=

N−1∑

ℓ=0

(
z√
2s

)N−ℓ−1 1

2π
√
−1

∮

C(δ0)
dη

e2(x/
√
2s)η−η2

ηN−ℓ

=

N−1∑

ℓ=0

(
z√
2s

)N−ℓ−1 1

(N − ℓ− 1)!
HN−ℓ−1

(
x√
2s

)
,

where we have used the contour integral representation of the Hermite polynomials (1.34). Thus
its integral transformation is calculated as

I
[
Φ0
Nδ0((s, x);W )

∣∣ (t, y)
]

=

N−1∑

ℓ=0

1

(N − ℓ− 1)!
HN−ℓ−1

(
x√
2s

)
1

(2s)(N−ℓ−1)/2
I[WN−ℓ−1|(t, y)]

=

N−1∑

ℓ=0

1

(N − ℓ− 1)!
HN−ℓ−1

(
x√
2s

)
1

(2s)(N−ℓ−1)/2
mN−ℓ−1(t, y)

=
N−1∑

ℓ=0

1

(N − ℓ− 1)!2N−ℓ−1

(
t

s

)(N−ℓ−1)/2

HN−ℓ−1

(
x√
2s

)
HN−ℓ−1

(
y√
2t

)
,

where we have used Lemma 1.1 and (1.40) in Section 1.3. Then we obtain the following,

M0
Nδ0((s, x)|(t, B(t))) =

N−1∑

n=0

1

n!2n
mn(s, x)mn(t, B(t))

=
√
πex

2/4s+B(t)2/4t
N−1∑

n=0

(
t

s

)n/2

ϕn

(
x√
2s

)
ϕn

(
B(t)√

2t

)
, (1.117)
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where

ϕn(x) =
1√√
π2nn!

Hn(x)e−x2/2, x ∈ R, n ∈ N0, (1.118)

are the Hermite orthonormal functions on R,

∫

R

dxϕn(x)ϕm(x) = δnm, n,m ∈ N0. (1.119)

The following expression for the transition probability density (1.1) of BM is known as Mehler’s
formula,

p(s− t, x|y) =
e−x2/4s

e−y2/4t

1√
2s

∞∑

n=0

(
t

s

)n/2

ϕn

(
x√
2s

)
ϕn

(
y√
2t

)
. (1.120)

Since mn, n ∈ N0 are the fundamental martingale polynomials associated with BM, the process
(1.117) is a continuous martingale. Then we see that

E
[
M0

Nδ0((s, x)|(t,B(t)))
]

= E
[
M0

Nδ0((s, x)|(0,B(0)))
]

= 1

for (s, x) ∈ [0,∞) × R, 0 ≤ t <∞.
By the formula (1.114), we obtain the correlation kernels as

KNδ0(s, x; t, y) = p(s, x|0)M0
Nδ0((s, x)|(t, y)) − 1(s > t)p(s− t, x|y)

=
e−x2/4s

e−y2/4t
K

(N)
Hermite(s, x; t, y) (1.121)

with

K
(N)
Hermite(s, x; t, y) =

1√
2s

N−1∑

n=0

(
t

s

)n/2

ϕn

(
x√
2s

)
ϕn

(
y√
2t

)

− 1(s > t)
1√
2s

∞∑

n=0

(
t

s

)n/2

ϕn

(
x√
2s

)
ϕn

(
y√
2t

)
.

=





1√
2s

N−1∑

n=0

(
t

s

)n/2

ϕn

(
x√
2s

)
ϕn

(
y√
2t

)
for s ≤ t,

− 1√
2s

∞∑

n=N

(
t

s

)n/2

ϕn

(
x√
2s

)
ϕn

(
y√
2t

)
for s > t,

(1.122)

where Mehler’s formula (1.120) was used. By the gauge invariance (Lemma 1.11), the factor

e−x2/4s/e−y2/4t in (1.121) is irrelevant for DSPs. The kernel K
(N)
Hermite is known as the extended

Hermite kernel (see, for instance, Exercise 11.6.3 in [21]).
The equal-time correlation kernel

K
(N, t)
Hermite(x, y) ≡ K

(N)
Hermite(t, x; t, y)

=
1√
2t

N−1∑

n=0

ϕn

(
x√
2t

)
ϕn

(
y√
2t

)
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has the following expression,

K
(N, t)
Hermite(x, y) =

√
N

2

ϕN (x/
√

2t)ϕN−1(y/
√

2t) − ϕN−1(x/
√

2t)ϕN (y/
√

2t)

x− y
,

if x 6= y, (1.123)

K
(N, t)
Hermite(x, x)

=
1√
2t

[
N

{
ϕN

(
x√
2t

)}2

−
√
N(N + 1)ϕN−1

(
x√
2t

)
ϕN+1

(
x√
2t

)]
.

(1.124)

This spatial correlation kernel is a special case of the Christoffel–Dorboux kernel (see, for
instance, Chapter 9 in [21] and Chapter 3 in [2]). It is called the Hermite kernel and defines the
determinantal point process [81, 77] on R such that a spatial correlation function is given by

ρ
(N, t)
Hermite(xN ′) = det

1≤i,j≤N ′

[
K

(N, t)
Hermite(xi, xj)

]
(1.125)

for any 1 ≤ N ′ ≤ N and xN ′ = (x1, . . . , xN ′) ∈ RN ′
, t > 0. We write the probability measure of

this determinantal point process as P
(N, t)
Hermite.

1.8 Exercises 1

1.8.1 Exercise 1.1

For t > 0, x ∈ R, and α ∈ C, let
Gα(t, x) = eαx−α2t/2. (1.126)

Let (B(t))t≥0 be the 1 dimensional standard Brownian motion (BM) in (Ω,P,F) with the filtration
Ft = σ(B(s) : 0 ≤ s ≤ t), t ≥ 0.

(1) Prove the equality

eαB(t)

E[eαB(t)]
= Gα(t, B(t)), t ≥ 0. (1.127)

(2) Prove that (Gα(t, B(t)))t≥0 is Ft-martingale;

E[Gα(t, B(t))|Fs] = Gα(s,B(s)), 0 < s < t. (1.128)

(3) Let Ĝw(t, x) be the Fourier transformation of Gα(t, x);

Ĝw(t, x) :=

∫ ∞

−∞

e−
√
−1αw

2π
Gα(t, x)dα. (1.129)

Show that

Ĝw(t, x) =
e−(

√
−1x+w)2/2t

√
2πt

. (1.130)
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(4) Define the integral transformation by

I[f(W )|(t, x)] =

∫ ∞

−∞
f(
√
−1w)Ĝw(t, x)dw. (1.131)

For n ∈ N0 := {0, 1, . . . }, let

mn(t, x) = I[W n|(t, x)]

=

∫ ∞

−∞
(
√
−1w)nĜw(t, x)dw, t ≥ 0. (1.132)

Express mn(t, x), n ∈ N0 using the Hermite polynomials,

Hn(x) := (−1)nex
2 dne−x2

dxn

=

[n/2]∑

k=0

(−1)k
n!

k!(n − 2k)!
(2x)n−2k. (1.133)

(5) Prove the following for {mn(t, x)}n∈N0
.

(i) They are monic polynomials of degrees n ∈ N0 with time-dependent coefficients:

mn(t, x) = xn +

n−1∑

k=0

c(k)n (t)xk, t ≥ 0.

(ii) For 0 ≤ k ≤ n− 1, c
(k)
n (0) = 0. That is,

mn(0, x) = xn, n ∈ N0.

(iii) If we set x = B(t), they provide martingales:

E[mn(t, B(t))|Fs] = mn(s,B(s)), 0 ≤ s ≤ t, n ∈ N0. (1.134)

1.8.2 Exercise 1.2

Let
hN (x) :=

∏

1≤i<j≤N

(xj − xi) = det
1≤i,j≤N

[xi−1
j ]. (1.135)

(1) Using the basic properties of determinant, verify the equalities,

hN (y)

hN (x)
=

1

hN (x)
det

1≤i,j≤N
[yi−1

j ]

=
1

hN (x)
det

1≤i,j≤N
[mi−1(t, yj)], (1.136)

where {mn(t, x)}n∈N0
are given by (1.132) in Exercise 1.1.
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(2) We extend the integral transformation I defined by (1.131) in Exercise 1.1 to a linear integral

transformation of multivariate functions as follows: When F (i)(x) =
∏N

j=1 f
(i)
j (xj), i = 1, 2

are given for x = (x1, . . . , xN ) ∈ RN , then we define

I
[
F (i)(W)

∣∣{(tℓ, xℓ)}Nℓ=1

]
:=

N∏

j=1

I
[
f
(i)
j (Wj)

∣∣∣ (tj, xj)
]
, i = 1, 2, (1.137)

and

I
[
c1F

(1)(W) + c2F
(2)(W)

∣∣{(tℓ, xℓ)}Nℓ=1

]

:= c1I
[
F (1)(W)

∣∣{(tℓ, xℓ)}Nℓ=1

]
+ c2I

[
F (2)(W)

∣∣{(tℓ, xℓ)}Nℓ=1

]
, (1.138)

c1, c2 ∈ C, for 0 < ti < ∞, i = 1, . . . , N , where W = (W1, . . . ,WN ) ∈ RN . In particular, if
tℓ = t, 1 ≤ ∀ℓ ≤ N , we write I[ · |{(tℓ, xℓ)}Nℓ=1] simply as I[ · |(t,x)] with x = (x1, . . . , xN ).

Using multilinearity of determinants, verify the following equalities,

hN (y)

hN (x)
=

1

hN (x)
det

1≤i,j≤N

[
I[(Wj)

i−1|(t, yj)]
]

= I
[

1

hN (x)
det

1≤i,j≤N
[(Wj)

i−1]

∣∣∣∣ (t,y)

]

= I
[
hN (W)

hN (x)

∣∣∣∣ (t,y)

]
. (1.139)

(3) Prove the equality,
hN (z)

hN (x)
= det

1≤i,j≤N

[
Φxi
ξ (zj)

]
, (1.140)

where

Φu
ξ (z) =

∏

1≤k≤N,
xk 6=u

z − xk
u− xk

, (1.141)

ξ =
∑N

i=1 δxi ∈ Conf0(R), z, u ∈ C, following the steps given below.

(i) Let

H(x,z) = det
1≤i,j≤N


 ∏

1≤k≤N,k 6=i

(zj − xk)


 . (1.142)

Show that (a) it is a polynomial function of xi, zi, 1 ≤ i ≤ N with degree N(N − 1),
(b) H(x,x) = h(x)2, and (c) H(x,z) = 0, if xi = xj or zi = zj for some i, j with
1 ≤ i < j ≤ N . It is implied by (a)–(c) that H(x,z) = hN (x)hN (z).

(ii) By the definition (1.141), hence the RHS of (1.140) is equal to H(x,z)/h(x)2 for
ξ ∈ Conf0(R).
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1.8.3 Exercise 1.3

For a pair of space-time coordinates (s, x), (t, y) ∈ [0,∞) × R, consider the function,

MN ((s, x)|(t, y)) =

N−1∑

n=0

1

n!2n
mn(s, x)mn(t, y), (1.143)

where {mn(t, x)}n∈N0
are given by (1.132) in Exercise 1.1.

(1) The Hermite orthonormal functions are defined by

ϕn(x) =
1√√
π2nn!

Hn(x)e−x2/2, x ∈ R, n ∈ N0, (1.144)

where {Hn(x)}n∈N0
are the Hermite polynomials defined by (1.133). Prove the following

expression of MN ((s, x)|(t, y),

MN ((s, x)|(t, y)) =
√
πex

2/4s+y2/4t
N−1∑

n=0

(
t

s

)n/2

ϕn

(
x√
2s

)
ϕn

(
y√
2t

)
. (1.145)

(2) Let (B(t))t≥0 be BM adapted to the filtration Ft, t ≥ 0. Then prove that, for fixed (s, x) ∈
[0,∞) × R, (MN ((s, x)|(t, B(t))))t≥0 is an Ft-martingale, and

E [MN ((s, x)|(t,B(t)))] = E [MN ((s, x)|(0,B(0)))] = 1. (1.146)

(3) The following identity is known as Mehler’s formula,

∞∑

n=0

Hn(x)Hn(y)

2nn!
an =

e[2xya−(x2+y2)a2]/(1−a2)

√
1 − a2

, |a| < 1. (1.147)

Prove the following limit,

lim
N→∞

MN ((s, x)|(t, y)) =
p(s− t, x|y)

p(s, x|0)
, 0 < t < s, x, y ∈ R, (1.148)

where p(t, y|x) denotes the transition probability density of BM,

p(t, y|x) =
e−(y−x)2/2t

√
2πt

, t > 0, x, y ∈ R. (1.149)

(4) Define the spatio-temporal kernel as follows,

K(s, x; t, y) := p(s, x|0)MN ((s, x)|(t, y)) − 1(s > t)p(s− t, x|y), (1.150)

(s, x), (t, y) ∈ [0,∞)×R, where 1(ω) is an indicator; 1(ω) = 1, if ω is satisfied, and 1(ω) = 0,
otherwise. Then prove the equality

KNδ0(s, x; t, y) =
e−x2/4s

e−y2/4t
K

(N)
Hermite(s, x; t, y), (1.151)
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where

K
(N)
Hermite(s, x; t, y)

=





1√
2s

N−1∑

n=0

(
t

s

)n/2

ϕn

(
x√
2s

)
ϕn

(
y√
2t

)
for s ≤ t,

− 1√
2s

∞∑

n=N

(
t

s

)n/2

ϕn

(
x√
2s

)
ϕn

(
y√
2t

)
for s > t.

(1.152)

The spatio-temporal kernel K
(N)
Hermite(s, x; t, y) is known as the extended Hermite kernel

giving the correlation kernel for DYS2 starting from the configuration such that all N particles
are at the origin, Nδ0 ∈ Conf(R) \ Conf0(R).

2 Gaussian Analytic Functions and Their Zero-Point Processes

2.1 Reproducing kernel Hilbert spaces

2.1.1 Bergman spaces and Hardy spaces

A Hilbert function space of holomorphic functions is a Hilbert space H of functions on a
domain D in C equipped with the inner product 〈·, ·〉H,

〈af + bg, h〉H = a〈f, h〉H + b〈g, h〉H,
〈h, af + bg〉H = a〈h, f〉H + b〈h, g〉H, f, g, h ∈ H, a, b ∈ C

〈g, f〉H = 〈f, g〉H = 〈f , g〉H,

and the norm ‖f‖H :=
√

〈f, f〉H. The evaluation at each point of D is a continuous functional on
H. Therefore, for each point w ∈ D, there is an element of H, which is called the reproducing
kernel at w and denote by kw, with the property

〈f, kw〉H = f(w), ∀f ∈ H.
Because kw ∈ H, it is itself a function on D,

kw(z) = 〈kw, kz〉H.
We write

kH(z, w) := kw(z) = 〈kw, kz〉H (2.1)

and call it the reproducing kernel for H. By definition, it is Hermitian;

kH(z, w) = kH(w, z), z, w ∈ D.

If H is a holomorphic Hilbert function space, then kH is holomorphic in the first variable and
anti-holomorphic in the second. We see that kH(z, w) is a positive semi-definite kernel: for any
n ∈ N := {1, 2, . . . }, for any points zi ∈ D and ξi ∈ C, i = 1, 2, . . . , n,

n∑

i=1

n∑

j=1

kH(zi, zj)ξiξj =
n∑

i=1

n∑

j=1

〈kzj , kzi〉Hξiξj =
n∑

i=1

n∑

j=1

〈kH(·, zj), kH(·, zi)〉Hξiξj

=

〈
n∑

i=1

kH(zi, ·)ξi,
n∑

j=1

kH(zj , ·)ξj
〉

H

=
∥∥∥

n∑

i=1

ξikH(zi, ·)
∥∥∥
2

H
≥ 0. (2.2)
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Let {en : n ∈ I} be any complete orthonormal systme (CONS) for H, where I is an index set,

〈en, em〉H = δnm, n,m ∈ I,
f ∈ H ⇐⇒ f =

∑

n∈I
cnen with (cn)n∈I ∈ ℓ2(I).

Then one can prove that the reproducing kernel for H is written in the form

kH(z, w) =
∑

n∈I
en(z)en(w). (2.3)

Actually, this gives

〈f(·), kH(·, w)〉H =

〈
∑

m∈I
cmem(·),

∑

n∈I
en(·)en(w)

〉

H

=
∑

m∈I

∑

n∈I
cm〈em, en〉Hen(w)

=
∑

n∈I
cnen(w) = f(w), ∀f ∈ H, w ∈ D.

We note that the positive definiteness of the kernel (2.2) is equivalent with the situation such that,
for any points zi ∈ D, i ∈ N, the matrix (kH(zi, zk))1≤i,j≤n has a nonnegative determinant,

det
1≤i,j≤n

[kH(zi, zj)] ≥ 0 for any n ∈ N.

First we show two examples of holomorphic Hilbert function spaces, the Bergman space and
the Hardy space, for a unit disk D := {z ∈ C : |z| < 1} and the domains which are conformally
transformed from D.

Example 2.1 The Bergman space on D, denoted by L2
B(D), is the Hilbert space of holomorphic

functions on D which are square-integrable with respect to the Lebesgue measure on C. The inner
product for L2

B(D) is given by

〈f, g〉L2
B
(D) :=

1

π

∫

D

f(z)g(z)m(dz) =
∞∑

n=0

f̂(n)ĝ(n)

n+ 1
,

where the nth Taylor coefficient of f at 0 is denoted by f̂(n); f(z) =
∑∞

n=0 f̂(n)zn. Let

ẽn(z) :=
√
n+ 1zn, n ∈ N0.

Then {ẽn(z)}n∈N0
form a CONS for L2

B(D) and the reproducing kernel (2.3) is given by

KD(z, w) := kL2
B
(D)(z, w)

=
∑

n∈N0

(n+ 1)(zw)n =
1

(1 − zw)2
, z, w ∈ D. (2.4)

This kernel is called the Bergman kernel of D.
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Example 2.2 The Hardy space on D, H2(D), consists of holomorphic functions on D such that
the Taylor coefficients form a square-summable series;

‖f‖2H2(D) :=
∑

n∈N0

|f̂(n)|2 <∞, f ∈ H2(D).

For every f ∈ H2(D), the non-tangential limit limr↑1 f(re
√
−1φ) exists a.e. by Fatou’s theorem and

we write it as f(e
√
−1φ). It is known that f(e

√
−1φ) ∈ L2(∂D). Then one can prove that the inner

product of H2(D) is given by the following three different ways,

〈f, g〉H2(D) =





∑

n∈N0

f̂(n)ĝ(n),

lim
r↑1

1

2π

∫ 2π

0
f(re

√
−1φ)g(re

√
−1φ)dφ, f, g ∈ H2(D),

1

2π

∫ 2π

0
f(e

√
−1φ)g(e

√
−1φ)dφ,

(2.5)

with ‖f‖2H2(D) = 〈f, f〉H2(D). Let σ be the measure on the boundary of D which is the usual arc

length measure. Then the last expression of the inner product (2.5) is written as 〈f, g〉H2(D) =

(1/2π)
∫
γ1
f(z)g(z)σ(dz), where γ1 is a unit circle {e

√
−1φ : φ ∈ [0, 2π)} giving the boundary of D.

If we set en(z) := e
(0,0)
n (z) = zn, n ∈ N0, then {en(z)}n∈N0

form CONS for H2(D). The reproducing
kernel (2.3) is given by

SD(z, w) := kH2(D)(z, w)

=
∑

n∈N0

(zw)n =
1

1 − zw
, z, w ∈ D, (2.6)

which is called the Szegő kernel of D.

Let f : D → D̃ be a conformal transformation (the angle-preserving one-to-one map)
between two bounded domains D, D̃ ( C with C∞ smooth boundary (analytic boundary). We find
an argument in Chapter 12 of [8] concluding that the derivative of the transformation f denoted
by f ′ has a single valued square root on D. We let

√
f ′(z) denote one of the square roots of f ′.

The Szegő kernel and the Bergman kernel are then transformed by f as [8, Chapters 12, 16]

SD(z, w) =
√
f ′(z)

√
f ′(w)SD̃(f(z), f(w)),

KD(z, w) = |f ′(z)||f ′(w)|KD̃(f(z), f(w)), z, w ∈ D. (2.7)

Consider the special case in which D ( C is a simply connected domain with analytic boundary and
D̃ = D. For each α ∈ D, Riemann’s mapping theorem gives a unique conformal transformation;

hα : D → D conformal such that hα(α) = 0, h′α(α) > 0. (2.8)

Such hα is called the Riemann mapping function. By (2.6), the first equation in (2.7) gives

SD(z, w) =
√
h′α(z)

√
h′α(w)SD(hα(z), hα(w))

=
√
h′α(z)

√
h′α(w)

1

1 − hα(z)hα(w)
, z, w ∈ D.
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Since hα(α) = 0, if we put z = α, or w = α, or z = w = α in this formula, then we readily obtain

SD(α,w) =
√
h′α(α)

√
h′α(w)

1

1 − 0 × hα(w)
=
√
h′α(α)

√
h′α(w),

SD(z, α) =
√
h′α(z)

√
h′α(α), SD(α,α) =

√
h′α(α)

√
h′α(α)

=⇒ SD(z, α)SD(α,w)

SD(α,α)
=

√
h′α(α)

√
h′α(w)

√
h′α(z)

√
h′α(α)

√
h′α(α)

√
h′α(α)

=
√
h′α(z)

√
h′α(w)

Hence the above formula is written as [7],

SD(z, w) =
SD(z, α)SD(w,α)

SD(α,α)

1

1 − hα(z)hα(w)
, z, w, α ∈ D. (2.9)

Similarly, we have

KD(z, w) =
SD(z, α)2SD(w,α)2

SD(α,α)2
1

(1 − hα(z)hα(w))2
, z, w, α ∈ D. (2.10)

Hence the following relationship is established,

SD(z, w)2 = KD(z, w), z, w ∈ D. (2.11)

Here we notice that (2.9) is rewritten as

SD(z, w) − SD(z, α)SD(α,w)

SD(α,α)
= SD(z, w)hα(z)hα(w), z, w, α ∈ D. (2.12)

LHS is regarded as the reproducing kernel for the Hilbert subspace

H2
a(D) := {f ∈ H2(D) : f(α) = 0}, (2.13)

and we will denote such a conditional kernel with a deterministic zero at α by Sα
D(z, w). Hence

we obtain the formula

Sα
D(z, w) = SD(z, w)hα(z)hα(w), z, w, α ∈ D. (2.14)

Let q ∈ (0, 1) be a fixed number and we consider the annulus

Aq := {z ∈ C : q < |z| < 1}.

As the third example of the Hilbert spaces of holomorphic functions, we consider the Hardy space
on Aq.

Example 2.3 The Hardy space for Aq, H
2(Aq), is the Hilbert space of holomorphic functions

on Aq equipped with the inner product

〈f, g〉H2(Aq) =
1

2π

∫ 2π

0
f(e

√
−1φ)g(e

√
−1φ)dφ+

1

2π

∫ 2π

0
f(qe

√
−1φ)g(qe

√
−1φ) qdφ, f, g ∈ H2(Aq).

(2.15)
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A CONS of H2(Aq) is given by {e(q,q)n }n∈Z with

e(q,q)n (z) =
zn√

1 + q2n+1
, z ∈ Aq, n ∈ Z,

and the reproducing kernel is given by [52]

SAq(z, w) =
∑

n∈Z
e(q,q)n (z)e

(q,q)
n (w) =

∞∑

n=−∞

(zw)n

1 + q2n+1
. (2.16)

This infinite series converges absolutely for z, w ∈ Aq and is called the Szegő kernel of Aq.

The nonexistence of zero in D of SD(·, α), α ∈ D and the uniqueness of zero in Aq of SAq (·, α),
α ∈ Aq are concluded from a general consideration (see, for instance, [8, Section 27]). Define

α̂ := − q

α
, α ∈ Aq. (2.17)

The fact
SAq (α̂, α) = SAq(α, α̂) = 0, α ∈ Aq (2.18)

was proved as Theorem 1 in [82] by direct calculation, for which a simpler proof can be given using
theta functions (see Lemma 2.5 below).

Again we consider the conformal transformation f : D → D̃ between two bounded domains
D, D̃ ( C with analytic boundaries. Here we consider the case in which D is a 2-connected
domain and D̃ = D. For each α ∈ D, there exists a unique function fa giving a branched 2 to
1 covering map of D to D, in which a unique point α̂ = α̂(α) 6= α, α̂ ∈ D exists such that

fα(α) = fα(α̂) = 0.

The map fα, α ∈ D is called the Ahlfors mapping function [8, Chapter 13]. By the fact (2.18)
with (2.17), for an arbitrary, but fixed α ∈ D, we can verify that the following set forms a CONS

for H2(Aq) which is different from {e(q,q)n (z)}n∈Z given by (2.15),

êjn(z) :=
SAq (z, αj)√
SAq(αj , αj)

fα(z)n, j = 0, 1, n ∈ N0, (2.19)

where
α0 := α, α1 := α̂.

Hence the Szegő kernel of Aq can be expressed as

SAq (z, w) =

1∑

j=0

∞∑

n=0

êjn(z)êjn(w)

=

(
SAq(z, α)SAq (w,α)

SAq(α,α)
+
SAq(z, α̂)SAq (w, α̂)

SAq(α̂, α̂)

) ∞∑

n=0

fα(z)nfα(z)n

=

(
SAq(z, α)SAq (w,α)

SAq(α,α)
+
SAq(z, α̂)SAq (w, α̂)

SAq(α̂, α̂)

)
1

1 − fα(z)fα(w)
, z, w ∈ Aq. (2.20)
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Then, if we consider the Hilbert subspace of Aq such that

H2
α,α̂(Aq) := {f ∈ H2(Aq) : f(α) = f(α̂) = 0},

then its reproducing kernel should be given by

Sα,α̂
Aq

(z, w) := SAq(z, w) −
(
SAq (z, α)SAq (α,w)

SAq(α,α)
+
SAq(z, α̂)SAq(α̂, w)

SAq (α̂, α̂)

)
. (2.21)

It is easy to verify that (2.20) gives [8]

Sα,α̂
Aq

(z, w) = SAq(z, w)fα(z)fα(w), z, w ∈ Aq. (2.22)

Now we ask the following question.

(Q) For α ∈ Aq, consider the conditional Hilbert space

H2
α(Aq) := {f ∈ H2(Aq) : f(α) = 0},

whose reproducing kernel is given by

Sα
Aq

(z, w) := SAq(z, w) − SAq(z, α)SAq (α,w)

SAq(α,α)
, z, w ∈ Aq. (2.23)

Is it possible to factorize this conditional kernel in the form as (2.14) and (2.22)?

2.1.2 Theta function

Assume that p ∈ C is a fixed number such that 0 < |p| < 1. We use the following standard notation,

(a; p)n :=
n−1∏

i=0

(1 − api), (a; p)∞ :=
∞∏

i=0

(1 − api),

(a1, . . . , ak; p)∞ := (a1; p)∞ · · · (ak; p)∞. (2.24)

The theta function with argument z and nome p is defined by

θ(z; p) := (z, p/z; p)∞. (2.25)

We often use the shorthand notation θ(z1, . . . , zn; p) :=
∏n

i=1 θ(zi; p).
As a function of z, the theta function θ(z; p) is holomorphic in C× and has single zeros precisely

at pi, i ∈ Z, that is,
{z ∈ C× : θ(z; p) = 0} = {pi : i ∈ Z}. (2.26)

We will use the inversion formula

θ(1/z; p) = −1

z
θ(z; p) (2.27)

and the quasi-periodicity property

θ(pz; p) = −1

z
θ(z; p) (2.28)
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of the theta function. By comparing (2.27) and (2.28) and performing the transformation z 7→ 1/z,
we immediately see the periodicity property,

θ(p/z; p) = θ(z; p). (2.29)

By Jacobi’s triple product identity (see, for instance, [22, Section 1.6]), we have the Laurent
expansion

θ(z; p) =
1

(p; p)∞

∑

n∈Z
(−1)np(

n
2)zn.

One can show that [59, Chapter 20]

lim
p→0

θ(z; p) = 1 − z, (2.30)

θ′(1; p) :=
∂θ(z; p)

∂z

∣∣∣
z=1

= −(p; p)2∞. (2.31)

The theta function satisfies the following Weierstrass’ addition formula [41],

θ(xy, x/y, uv, u/v; p) − θ(xv, x/v, uy, u/y; p) =
u

y
θ(yv, y/v, xu, x/u; p). (2.32)

When p is real and p ∈ (0, 1), we see that

θ(z; p) = θ(z; p). (2.33)

In this case the definition (2.25) with (2.24) implies that

θ(x; p) > 0, x ∈ (p2i+1, p2i)
θ(x; p) = 0, x = pi

θ(x; p) < 0, x ∈ (p2i, p2i−1)



 i ∈ Z,

θ(x; p) > 0, x ∈ (−∞, 0). (2.34)

Moreover, we can prove the following: In the interval x ∈ (−∞, 0), θ(x) := θ(x; p) is strictly convex
with

min
x∈(−∞,0)

θ(x) = θ(−√
p) =

∞∏

n=1

(1 + pn−1/2)2 > 0, (2.35)

and limx↓−∞ θ(x) = limx↑0 θ(x) = +∞, and in the interval x ∈ (p, 1), θ(x) is strictly concave with

max
x∈(p,1)

θ(x) = θ(
√
p) =

∞∏

n=1

(1 − pn−1/2)2, (2.36)

θ(x) ∼ (p; p)2∞(x− p)/p as x ↓ p, and θ(x) ∼ (p; p)2∞(1 − x) as x ↑ 1, where (2.28) and (2.31) were
used.
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2.1.3 Weighted Szegő kernels of annulus and conformal transformations

We introduce a positive parameter r > 0. Consider the Hilbert space of holomorphic functions on
Aq equipped with the inner product

〈f, g〉H2
r (Aq) =

1

2π

∫

γ1∪γq
f(z)g(z)σr(dz), f, g ∈ H2

r (Aq)

with

σr(dz) =

{
dφ, if z ∈ γ1 := {e

√
−1φ : φ ∈ [0, 2π)},

rdφ, if z ∈ γq := {qe
√
−1φ : φ ∈ [0, 2π)},

which we write as H2
r (Aq). A CONS of H2

r (Aq) is given by {e(q,r)n }n∈Z with

e(q,r)n (z) =
zn√

1 + rq2n
, z ∈ Aq, n ∈ Z,

and the reproducing kernel is given by [52]

SAq (z, w; r) =
∑

n∈Z
e(q,r)n (z)e

(q,r)
n (w) =

∞∑

n=−∞

(zw)n

1 + rq2n
. (2.37)

This infinite series converges absolutely for z, w ∈ Aq.
When r = q, this Hilbert function space isreduced to the Hardy space for Aq, H

2(Aq), introduced
in Example 2.3 in Section 2.1.1, associated with the reproducing kernel

SAq(·, ·) := SAq (·, ·; q).

The kernel (2.37) with a parameter r > 0 is called the weighted Szegő kernel of Aq and H2
r (Aq)

is the reproducing kernel Hilbert space (RKHS) with respect to SAq(·, ·; r) [52]. We call r the
weight parameter [36]. Notice that (2.37) implies that SAq (z, z; r) is a monotonically decreasing
function of the weight parameter r ∈ (0,∞) for each fixed z ∈ Aq.

From now on, we put
p = q2 (2.38)

for the nome p of the theta function (2.25), and assume that θ(z) = θ(z; q), where q ∈ (0, 1) specifies
the radius of the inner circle of the annulus Aq.

Proposition 2.4 (McCullough and Shen [52]) For r > 0

SAq (z, w; r) =
q20θ(−rzw)

θ(−r, zw)
, z, w ∈ Aq, (2.39)

where
q0 :=

∏

n∈N
(1 − q2n) = (q2; q2)∞. (2.40)

In particular,

SAq(z, w) = SAq (z, w; q) =
q20θ(−qzw)

θ(−q, zw)
, z, w ∈ Aq. (2.41)

43



Proof. The following function has been studied in [52, 14, 84],

fJK(z, a; q) :=
∑

n∈Z

zn

1 − aq2n
, (2.42)

with q2 < |z| < 1, a /∈ {q2i : i ∈ Z}, which is called the Jordan–Kronecker function [84, p.59].
We readily find that

SAq(z, w; r) = fJK(zw,−r; q), z, w ∈ Aq. (2.43)

The bilateral basic hypergeometric series in base p with one numerator parameter a and one
denominator parameter b is defined by [22]

1ψ1(a; b; p, z) = 1ψ1

[ a
b

; p, z
]

:=
∑

n∈Z

(a; p)n
(b; p)n

zn, |b/a| < |z| < 1.

The Jordan–Kronecker function (2.42) is a special case of the 1ψ1 function [14, 84];

fJK(z, a; q) =
1

1 − a
1ψ1(a; aq2; q2, z).

The following equality is known as Ramanujan’s 1ψ1 summation formula [14, 22, 84],

∑

n∈Z

(a; p)n
(b; p)n

zn =
(az, p/(az), p, b/a; p)∞
(z, b/(az), b, p/a; p)∞

, |b/a| < |z| < 1.

Combining the above two equalities with an appropriate change of variables, we obtain [14, 84]

fJK(z, a; q) =
(az, q2/(az), q2, q2; q2)∞

(z, q2/z, a, q2/a; q2)∞
=
q20θ(za; q2)

θ(z, a; q2)
. (2.44)

By (2.43), (2.44) proves the equality (2.39). The proof is complete.
Here we notice that the following symmetries of fJK are readily verified by (2.44) using (2.27)

and (2.28) [14, 84].

fJK(z, a) = fJK(a, z), (2.45)

fJK(z, a) = −fJK(z−1, a−1), (2.46)

fJK(z, a) = zfJK(z, aq2) = afJK(zq2, a). (2.47)

Since θ is holomorphic in C×, the expression (2.39) implies that SAq(z, α; r) is meromorphic in
C×. By the basic properties of θ given in Section 2.1.2, the following is easily verified.

Lemma 2.5 Assume that α ∈ Aq. Then SAq (z, α; r) has zeros at z = −q2i/(αr), i ∈ Z in C×. In
particular, SAq(z, α) has a unique zero in Aq at z = α̂ given by (2.17).

We have found the answer to the question (Q) addressed in Section 2.1.1 in the paper by McCul-
lough and Shen [52].
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Proposition 2.6 (Mccullough and Shen [52]) The equality

Sα
Aq

(z, w; r) = SAq(z, w; r|α|2)hqα(z)hqα(w), z, w, α ∈ Aq, (2.48)

holds with

hqα(z) := z
θ(α/z)

θ(αz)
= −αθ(z/α)

θ(zα)
, z, α ∈ Aq. (2.49)

The special case with r = q answers the question (Q) as

Sα
Aq

(z, w) = SAq(z, w; q|α|2)hqα(z)hqα(w), z, w, α ∈ Aq. (2.50)

Proof. We put (2.23) with (2.39) and (2.49) to (2.48), then the equality is expressed by theta
functions. After multiplying both sides by the common denominator, we see that the equality
(2.48) is equivalent to the following,

θ(−rzw,−r|α|2, αz, αw) − θ(−rαz,−rαw, zw, |α|2)

= zwθ(−rzw|α|2, αz−1, αw−1,−r). (2.51)

Now we change the variables from {z, w, α, r} to {x, y, u, v} as αz = x/y, αw = u/v, zw = x/v,
|α|2 = u/y, and r = −yv. Then LHS of (2.51) becomes θ(xy, x/y, uv, u/v) − θ(xv, x/v, uy, u/y),
and RHS side becomes (x/v)θ(yv, (y/v)−1, xu, (x/u)−1) which is equal to (u/y)θ(yv, y/v, xu, x/u)
by (2.27). Hence Weierstrass’ addition formula (2.32) proves the equality (2.51). The proof is
complete.

Following the formula (2.12) for Sα
Aq

, conditional kernels Sα1,...,αn

Aq
are inductively defined as

Sα1,...,αn

Aq
(z, w) = (S

α1,...,αn−1

Aq
)αn(z, w), z, w, α1, . . . , αn ∈ D, n = 2, 3, . . . . (2.52)

The kernels Sα1,...,αn

Aq
, n = 2, 3, . . . , will construct Hilbert subspaces of the Hardy space for H2(Aq),

H2
α1,...,αn

(Aq) := {f ∈ Hk : f(α1) = · · · = f(αn) = 0}.

For n ∈ N, α1, . . . , αn ∈ Aq, define

γq{αℓ}nℓ=1

(z) :=

n∏

ℓ=1

hqαℓ
(z), z ∈ Aq. (2.53)

Then the Mccullough and Shen formula (2.48) [52] is generalized as

Sα1,...,αn

Aq
(z, w; r) = SAq

(
z, w; r

n∏

ℓ=1

|αℓ|2
)
γq{αℓ}nℓ=1

(z)γq{αℓ}nℓ=1

(w), z, w ∈ Aq, (2.54)

for n ∈ N, α1, . . . , αn ∈ Aq. As a special case of (2.54), we have

Sα,α̂
Aq

(z, w) = SAq (z, w)f qα(z)f qα(w), z, w ∈ Aq (2.55)

with

f qα(z) :=
1

z
hqα(z)hqα̂(z)

= z
θ(−qzα, α/z)
θ(−qz/α, αz) = −αθ(−qzα, z/α)

θ(−qz/α, zα)
. (2.56)
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The equation (2.55) is nothing but (2.22), and f qα given by (2.56) is identified with the Ahlfors
map from Aq to D.

We can prove the following.

Lemma 2.7 For α ∈ Aq,

(i) hqα(α) = 0, (2.57)

(ii) 0 < |hqα(z)| < 1 ∀z ∈ Aq \ {α}, (2.58)

(iii) |hqα(z)| =

{
1, if z ∈ γ1 := {z ∈ C : |z| = 1},
|α|, if z ∈ γq := {z ∈ C : |z| = q},

(2.59)

(iv) hqα
′(α) = − θ′(1)

θ(|α|2)
=

q20
θ(|α|2)

> 0, (2.60)

(v) lim
q→0

hqα(z) =
z − α

1 − αz
= z

1 − α/z

1 − αz
=: hα(z). (2.61)

Hence, hqα is identified with a conformal map from Aq to the unit disk with a circular slit in it,
in which α ∈ Aq is sent to the origin [52]. Notice that hα is the Möbius transformation D → D

sending α to the origin.

- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

- 1.0 - 0.5 0.5 1.0

- 1.0

- 0.5

0.5

1.0

Figure 3: Conformal map hqα : Aq → D \ {a circular slit} is illustrated for q = 1/3 and α = 2/3.
The point α = 2/3 in A1/3 is mapped to the origin. The outer boundary γ1 of A1/3 (denoted by a
red circle) is mapped to a unit circle (a red circle) making the boundary of D. The inner boundary
γ1/3 of A1/3 (a green circle) is mapped to a circular slit (denoted by a green arc) which is a part of
the circle with radius α = 2/3, where the map is two-to-one except the two points on γ1/3 mapped
to the two edges of the circular slit.

2.2 I.i.d.Gaussian power series, Laurent series, and their zero point processes

For a domain D ⊂ C, let X be a random variable on a probability space which takes values in the
space of analytic functions on D. If (X(z1), . . . ,X(zn)) follows a centered (mean zero) complex
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Gaussian distribution for every n ∈ N and every z1, . . . , zn ∈ D, X is said to be a Gaussian
analytic function (GAF) [26]. The zero set of X is regarded as a point process on D denoted by
a nonnegative-integer-valued Radon measure

ZX =
∑

z∈D:X(z)=0

δz,

and it is simply called the zero point process of the GAF. Zero-point processes of GAFs have
been extensively studied in quantum and statistical physics as solvable models of quantum chaotic
systems and interacting particle systems. Many important characterizations of their probability
laws have been reported in probability theory.

A typical example of GAF is provided by the i.i.d. Gaussian power series defined on the
unit disk D: Let N0 := {0, 1, 2, . . . } and {ζn}n∈N0

be i.i.d. standard complex Gaussian random
variables with density

p(z) =
1

π
e−|z|2 =

1√
π
e−x2 · 1√

π
e−y2 , z = x+

√
−1y, x, y ∈ R,

and consider a random power series,

XD(z) =

∞∑

n=0

ζnz
n, (2.62)

which defines an analytic function on D a.s. This gives a GAF on D with a covariance kernel

E[XD(z)XD(w)] =
1

1 − zw
=: SD(z, w), z, w ∈ D. (2.63)

This kernel is identified with the Szegő kernel of D (2.6) of the Hardy space H2(D) introduced in
Section 2.1.1). Peres and Virág [63] proved that ZXD

is a determinantal point process (DPP)
such that the correlation kernel is given by SD(z, w)2 = (1 − zw)−2, z, w ∈ D with respect to
the reference measure λ = m/π. Here m represents the Lebesgue measure on C; m(dz) := dxdy,
z = x+

√
−1y ∈ C. This correlation kernel is identified with the reproducing kernel of the Bergman

space on D (2.4), which is called Bergman kernel of D in Section 2.1.1. Thus the study of Peres
and Virág on XD and ZXD

is associated with the following relationship between kernels on D [63],

E[XD(z)XD(w)]2 = SD(z, w)2 = KD(z, w), z, w ∈ D. (2.64)

Associated with the RKHS H2
r (Aq) studied in Section 2.1.3 we consider the Gaussian Laurent

series

Xr
Aq

(z) :=
∑

n∈Z
ζne

(q,r)
n (z) =

∞∑

n=−∞
ζn

zn√
1 + rq2n

, (2.65)

where {ζn}n∈Z are i.i.d. standard complex Gaussian random variables with density e−|z|2/π. Since
limn→∞ |ζn|1/n = 1 a.s., we apply the Cauchy–Hadamard criterion to the positive and negative
powers of Xr

Aq
(z) separately to conclude that this random Laurent series converges a.s. whenever

z ∈ Aq. Moreover, since the distribution ζn is symmetric, both of γ1 and γq are natural boundaries.
Hence Xr

Aq
provides a GAF on Aq whose covariance kernel is given by the weighted Szegő kernel

of Aq,

E[Xr
Aq

(z)Xr
Aq

(w)] = SAq(z, w; r), z, w ∈ Aq,
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and the zero point process is denoted by ZXr
Aq

:=
∑

z∈Aq:Xr
Aq

(z)=0 δz. In particular, we write

XAq (z) := Xq
Aq

(z), z ∈ Aq and ZXAq
:= ZXq

Aq
as mentioned above.

We recall Schottky’s theorem: The group of conformal transformations from Aq to itself is
generated by the rotations and the q-inversions

Tq(z) :=
q

z
.

The invariance of the present GAF and its zero point process under rotation is obvious. Using the
properties of SAq , we can prove the following.

Proposition 2.8 (i) The GAF Xr
Aq

given by (2.65) has the (q, r)-inversion symmetry in the
sense that {

(T ′
q(z))

1/2Xr
Aq

(Tq(z))
}

d
=
{√q

r
X

q2/r
Aq

(z)
}
, z ∈ Aq,

where T ′
q(z) :=

dTq

dz (z) = −q/z2.

(ii) For ZXr
Aq

=
∑

i δZi , let T ∗
q ZXr

Aq
:=
∑

i δT−1
q (Zi)

. Then T ∗
q ZXr

Aq

d
= Z

X
q2/r
Aq

.

(iii) In particular, when r = q, the GAF XAq is invariant under conformal transformations which
preserve Aq, and so is its zero point process ZXAq

.

Proof. The equivalence in distribution asserted by (i) is implied by proving the following equality
of the covariance kernel given by the weighted Szegő kernel of Aq,

√
T ′
q(z)

√
T ′
q(w)SAq(Tq(z), Tq(w); r) =

q

r
SAq(z, w; q2/r). (2.66)

If we use the expression (2.43) of SAq(z, w; r), the symmetries of the Jordan–Kronecker function
(2.46) and (2.47) prove (2.66). By the definition of zero point processes, (ii) is concluded from (i).
When r = q, (2.66) becomes

√
T ′
q(z)

√
T ′
q(w)SAq(Tq(z), Tq(w); q) =

√
T ′
q(z)

√
T ′
q(w)SAq(Tq(z), Tq(w)) = SAq (z, w),

which implies the invariance of the GAF XAq under conformal transformations preserving Aq by
Schottkey’s theorem and (iii) is proved.

We can give probabilistic interpretations of the above facts as follows.

Proposition 2.9 For any α1, . . . , αn ∈ Aq, n ∈ N, the following hold.

(i) The following equality is established,

{Xr
Aq

(z) : z ∈ Aq} given {Xr
Aq

(α1) = · · · = Xr
Aq

(αn) = 0}
d
=
{
γq{αℓ}nℓ=1

(z)X
r
∏n

ℓ=1 |αℓ|2
Aq

(z) : z ∈ Aq

}
.

(ii) Let Zα1,...,αn

Xr
Aq

denote the zero point process of the GAF Xr
Aq

(z) given {Xr
Aq

(α1) = · · · =

Xr
Aq

(αn) = 0}. Then,

Zα1,...,αn

Xr
Aq

d
= Z

X
r
∏n

ℓ=1
|αℓ|

2

Aq

+
n∑

i=1

δαi .
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Remark 2.10 For the GAF on D studied by Peres and Virág [63], {XD(z) : z ∈ D} given {XD(α) =
0} is equal in law to {hα(z)XD(z) : z ∈ D}, ∀α ∈ D, where hα is given by (2.61), and then, in the
notation used in Proposition 2.9,

Zα
XD

d
= ZXD

+ δα, ∀α ∈ D.

Hence, no new GAF nor new zero point process appear by conditioning of zeros. For the present
GAF on Aq, however, conditioning of zeros induces new GAFs and new zero point processes as

shown by Proposition 2.9. Actually, by (2.37) the covariance of the induced GAF X
r
∏n

ℓ=1 |αℓ|2
Aq

is
expressed by

SAq

(
z, w; r

n∏

ℓ=1

|αℓ|2
)

=

∞∑

n=−∞

(zw)n

1 + r
∏n

ℓ=1 |αℓ|2q2n
.

Since q < |αℓ| < 1, as increasing the number of conditioning zeros, the variance of induced GAF
monotonically increases, in which the increment is a decreasing function of |αℓ| ∈ (q, 1).

2.3 Permanental-determinantal point processes

2.3.1 Correlation functions of point processes

A point process is formulated as follows [35]. Let S be a base space, which is locally com-
pact Hausdorff space with a countable base, and a reference measure λ is given on S. The
configuration space of a point process on S is given by

Conf(S) =
{
ξ =

∑

i

δxi : xi ∈ S, ξ(Λ) <∞ for all bounded set Λ ⊂ S
}
.

We say ξn, n ∈ N := {1, 2, . . . } converges to ξ in the vague topology, if

∫

S
f(x)ξn(dx) →

∫

S
f(x)ξ(dx), ∀f ∈ Cc(S),

where Cc(S) is the set of all continuous real-valued functions with compact support. A point process
on S is a Conf(S)-valued random variable Ξ = Ξ(·). If Ξ({x}) ∈ {0, 1} for any point z ∈ S, then
the point process is said to be simple. Assume that Λi, i = 1, . . . ,m, m ∈ N are disjoint bounded
sets in S and ki ∈ N0, i = 1, . . . ,m satisfy

∑m
i=1 ki = n ∈ N0. A symmetric measure λn on Sn is

called the n-th correlation measure, if it satisfies

E

[
m∏

i=1

Ξ(Λi)!

(Ξ(Λi) − ki)!

]
= λn(Λk1

1 × · · · × Λkm
m ),

where when Ξ(Λi) − ki < 0, we interpret Ξ(Λi)!/(Ξ(Λi) − ki)! = 0. If λn is absolutely continuous
with respect to the n-product measure λ⊗n, the Radon–Nikodym derivative ρn(x1, . . . , xn) is called
the n-point correlation function with respect to the reference measure λ; that is,

λn(dx1 · · · dxn) = ρn(x1, . . . , xn)λ⊗n(dx1 · · · dxn).
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2.3.2 Permanental-determinantal point processes (PDPPs) with hierarchical struc-
tures

We introduce the following notation. For an n× n matrix M = (mij)1≤i,j≤n,

perdetM = perdet
1≤i,j≤n

[mij ] := perM detM, (2.67)

that is, perdetM denotes perM multiplied by detM . Note that perdet is a special case of hy-
perdeterminants introduced by Gegenbauer following Cayley [36]. If M is a positive semidefinite
Hermitian matrix, then perM ≥ detM ≥ 0, and hence perdetM ≥ 0 by the definition (2.67). The
following is the main theorem in Section 2.

Theorem 2.11 The zero point process ZXr
Aq

on Aq is a permanental-determinantal point

process (PDPP) in the sense that it has correlation functions {ρnAq
}n∈N given by

ρnAq
(z1, . . . , zn; r) =

θ(−r)
θ(−r∏n

k=1 |zk|4)
perdet
1≤i,j≤n

[
SAq

(
zi, zj ; r

n∏

ℓ=1

|zℓ|2
)]

(2.68)

for every n ∈ N and z1, . . . , zn ∈ Aq with respect to m/π.

The density of zeros on Aq with respect to m/π is given by

ρ1Aq
(z; r) =

θ(−r)
θ(−r|z|4)SAq(z, z; r|z|2)2 =

q40θ(−r,−r|z|4)

θ(−r|z|2, |z|2)2
, z ∈ Aq, (2.69)

which is always positive. Since ρ1Aq
(z; r) depends only on the modulus of the coordinate |z| ∈ (q, 1),

the PDPP is rotationally invariant. As shown by (2.34)–(2.36) in Section 2.1.2, in the interval
x ∈ (−∞, 0), θ(x) is positive and strictly convex with limx↓−∞ θ(x) = limx↑0 θ(x) = +∞, while in
the interval x ∈ (q2, 1), θ(x) is positive and strictly concave with θ(x) ∼ q20(x − q2)/q2 as x ↓ q2
and θ(x) ∼ q20(1−x) as x ↑ 1. Therefore, the density shows divergence both at the inner and outer
boundaries as

ρ1Aq
(z; r) ∼





q2

(|z|2 − q2)2
, |z| ↓ q,

1

(1 − |z|2)2
, |z| ↑ 1,

(2.70)

which is independent of r and implies E[ZXr
Aq

(Aq)] = ∞. See Fig.4.

If M is a 2×2 matrix, we see that perdetM = det(M ◦M), where M ◦M denotes the Hadamard
product of M , i.e., entrywise multiplication, (M ◦M)ij = MijMij. Then the two-point correlation
is expressed by a single determinant as

ρ2Aq
(z1, z2; r) =

θ(−r)
θ(−r|z1|4|z2|4)

det
1≤i,j≤2

[
SAq(zi, zj ; r|z1|2|z2|2)2

]
, z1, z2 ∈ Aq. (2.71)

Remark 2.12 (i) The PDPP with correlation functions (2.68) turns out to be a simple point
process, i.e., there is no multiple point a.s., due to the existence of two-point correlation function
with respect to the Lebesgue measure m/π [28, Lemma 2.7]. (ii) Using the explicit expression
(2.68) together with the Frobenius determinantal formula (2.90) given below, we can verify
that for every n ∈ N, the n-point correlation ρnAq

(z1, . . . , zn) > 0 if all coordinates z1, . . . , zn ∈ Aq

are different from each other, and that ρnAq
(z1, . . . , zn) = 0 if some of z1, . . . , zn coincide; e.g.,

zi = zj , i 6= j, by the determinantal factor in perdet (2.67).
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Figure 4: Dependence on the radial coordinate r = |z| ∈ (q, 1) of the density function ρ1Aq
(z; r) in

the case q = r = 1/3.

Remark 2.13 The determinantal point processes (DPPs) and the permanental point pro-
cesses (PPPs) have the n-correlation functions of the forms

ρnDPP(z1, . . . , zn) = det
1≤i,j≤n

[K(zi, zj)], ρnPPP(z1, . . . , zn) = per
1≤i,j≤n

[K(zi, zj)],

respectively (cf. [77, 26]). Due to Hadamard’s inequality for the determinant [51, Section II.4]
and Lieb’s inequality for the permanent [49], we have

ρ2DPP(z1, z2) ≤ ρ1DPP(z1)ρ1DPP(z2), ρ2PPP(z1, z2) ≥ ρ1PPP(z1)ρ1PPP(z2).

These correlation inequalities suggest a repulsive nature (negative correlation) for DPPs and an
attractive nature (positive correlation) for PPPs. Since perdet is considered to have intermediate
nature between determinant and permanent, PDPPs are expected to exhibit both repulsive
and attractive characters, depending on the position of two points z1 and z2. For example,
Remark 2.12 (ii) shows the repulsive nature inherited from the DPP side. The two-sidedness of the
present PDPP will be summarized in Theorem 2.22 given below.

Remark 2.14 The (q, r)-inversionb symmetry given by Proposition 2.8 (ii) is rephrased using
correlation functions as

ρnAq
(Tq(z1), . . . , Tq(zn); r)

n∏

ℓ=1

|T ′
q(zℓ)|2 = ρnAq

(z1, . . . , zn; q2/r) (2.72)

for any n ∈ N and z1, . . . , zn ∈ Aq, where Tq(z) = q/z and |T ′
q(z)|2 = q2/|z|4. In the correla-

tion functions {ρnAq
}n∈N given by Theorem 2.11, we see an inductive structure such that the

functional form of the permanental-determinantal correlation kernel SAq(·, ·; r∏n
ℓ=1 |zℓ|2) is de-

pending on the points {z1, . . . , zn}, which we intend to measure by ρnAq
, via the weight parameter

r
∏n

ℓ=1 |zℓ|2. This is due to the inductive structure of the induced GAFs generated in conditioning
of zeros as mentioned in Remark 2.10. In addition, the reference measure m/π is also weighted
by θ(−r)/θ(−r∏n

k=1 |zk|4). Such a hierarchical structure of correlation functions and refer-
ence measures is necessary to realize the (q, r)-inversion symmetry (2.72) and the invariance under
conformal transformations preserving Aq when r = q.
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2.3.3 Simpler but still non-trivial PDPP in q → 0 limit

The above GAF and the PDPP induce the following limiting cases. With fixed r > 0 we take the
limit q → 0. By the reason explained in Remark 2.16 below, in this limiting procedure, we should
consider the point processes {ZXr

Aq
: q > 0} to be defined on the punctured unit disk

D× := {z ∈ C : 0 < |z| < 1}

instead of D. Although the limit point process is given on D× by definition, it can be naturally
viewed as a point process defined on D, which we will introduce below. Let H2

r (D) be the Hardy
space on D with the weight parameter r > 0, whose inner product is given by

〈f, g〉H2
r (D)

=
1

2π

∫ 2π

0
f(e

√
−1φ)g(e

√
−1φ)dφ+ rf(0)g(0), f, g ∈ H2

r (D).

The reproducing kernel of H2
r (D) is given by

SD(z, w; r) =
∞∑

n=0

e(0,r)n (z)e
(0,r)
n (w) =

1

1 + r
+

∞∑

n=1

(zw)n

=
1 + rzw

(1 + r)(1 − zw)
, z, w ∈ D. (2.73)

The GAF associated with H2
r (D) is then defined by

Xr
D(z) =

ζ0√
1 + r

+
∞∑

n=1

ζnz
n, z ∈ D (2.74)

so that the covariance kernel is given by E[Xr
D(z)Xr

D(w)] = SD(z, w; r), z, w ∈ D. For the conditional
GAF given a zero at α ∈ D, the covariance kernel is given by

Sα
D(z, w; r) = SD(z, w; r|α|2)hα(z)hα(w), z, w, α ∈ D,

where the replacement of the weight parameter r by r|α|2 should be done, even though the factor
hα(z) is simply given by the Möbius transformation (2.61).

For the zero point process Theorem 2.11 is reduced to the following by the formula

lim
q→0

θ(z; q2) = 1 − z.

Corollary 2.15 Assume that r > 0. Then ZXr
D

is a PDPP on D with the correlation functions

ρnD(z1, . . . , zn; r) =
1 + r

1 + r
∏n

k=1 |zk|4
perdet
1≤i,j≤n

[
SD

(
zi, zj ; r

n∏

ℓ=1

|zℓ|2
)]

(2.75)

for every n ∈ N and z1, . . . , zn ∈ D with respect to m/π. In particular, the density of zeros on D is
given by

ρ1D(z; r) =
(1 + r)(1 + r|z|4)

(1 + r|z|2)2(1 − |z|2)2
, z ∈ D. (2.76)
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As r increases the first term in (2.74), which gives the value of the GAF at the origin, decreases
and hence the variance at the origin, E[|Xr

D(0)|2] = SD(0, 0; r) = (1+ r)−1 decreases monotonically.
As a result the density of zeros in the vicinity of the origin increases as r increases. Actually we
see that ρ1D(0; r) = 1 + r.

Remark 2.16 The asymptotics (2.70) show that the density of zeros of ZXr
Aq

diverges at the inner

boundary γq = {z : |z| = q} for each q > 0 while the density of ZXr
D

is finite at the origin as in
(2.76). Therefore infinitely many zeros near the inner boundary γq seem to vanish in the limit as
q → 0. This is the reason why we regard the base space of {ZXr

Aq
: q > 0} and the limit point

process ZXr
D

as D× instead of D as mentioned before. Indeed, in the vague topology, with which we
equip a configuration space, we cannot see configurations outside each compact set, hence infinitely
many zeros are not observed on each compact set in D× (not D) for any sufficiently small q > 0
depending on the compact set that we take.

2.3.4 Reduction to GAF and DPP of Peres and Virág

If we take the further limit r → 0 in (2.73), we obtain the Szegő kernel of D given by (2.63).
Since the matrix (SD(zi, zj)

−1)1≤i,j≤n = (1 − zizj)1≤i,j≤n has rank 2, the following equality called
Borchardt’s identity holds (see Theorem 3.2 in [58], Theorem 5.1.5 in [26]),

perdet
1≤i,j≤n

[
(1 − zizj)

−1
]

= det
1≤i,j≤n

[
(1 − zizj)

−2
]
. (2.77)

By the relation (2.64), the r → 0 limit of ZXr
D

is identified with the DPP on D, ZXD
, studied by

Peres and Virág [63], whose correlation functions are given by

ρnD,PV(z1, . . . , zn) = det
1≤i,j≤n

[KD(zi, zj)], n ∈ N, z1, . . . , zn ∈ D,

with respect to m/π
Here we give the result by Peres and Virág as a theorem.

Theorem 2.17 (Peres and Virág [63]) ZXD
is a DPP on D such that the correlation kernel

with respect to m/π is given by the Bergman kernel KD of D given by (2.4).

Remark 2.18 We see from (2.73) that

lim
r→∞

SD(z, w; r) = (1 − zw)−1 − 1, z, w ∈ D,

which can be identified with the conditional kernel given a zero at the origin; S0
D(z, w) = SD(z, w)−

SD(z, 0)SD(0, w)/SD(0, 0) for SD(z, 0) ≡ 1. In this limit we can use Borchardt’s identity again, since
the rank of the matrix (SD(zi, zj ;∞)−1)1≤i,j≤n = (z−1

i z−1
j − 1)1≤i,j≤n is two. Then, thanks to the

proper limit of the prefactor of perdet in (2.75) when zk ∈ D× for all k = 1, 2, . . . , n;

lim
r→∞

1 + r

1 + r
∏n

k=1 |zk|4
=

n∏

k=1

|zk|−4,

we can verify that
lim
r→∞

ρnD(z1, . . . , zn; r) = ρnD,PV(z1, . . . , zn)
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for every n ∈ N, and every z1, . . . , zn ∈ D×. On the other hand, taking (2.74) into account, we have

X∞
D (z) = z

∞∑

n=1

ζnz
n−1 d

= zXD(z),

from which, we can see that

lim
r→∞

ZXr
D

=: ZX∞
D

d
= ZXD

+ δ0,

that is, the DPP of Peres and Virág with a deterministic zero added at the origin. This is consistent
with the fact that ρ1D(0; r) = 1 + r diverges as r → ∞. Since

lim
r→0

ZXr
D

=: ZX0
D

d
= ZXD

as mentioned above, the one-parameter family of PDPPs {ZXr
D

: r ∈ (0,∞)} can be regarded as
an interpolation between the DPP of Peres and Virág and that DPP with a deterministic zero
added at the origin.

The distribution of ZXD
is invariant under Möbius transformations that preserve D [63]. This

invariance is a special case of the following, which can be proved using the conformal transformations
of the Szegő kernel and the Bergman kernel given by (2.7) [63, 26].

Proposition 2.19 (Peres and Virág [63]) Let D̃ ( C be a simply connected domain wit an-
alytic boundary. Then there is a GAF X

D̃
with covariance kernel E[X

D̃
(z)X

D̃
(w)] = S

D̃
(z, w),

z, w ∈ D̃, where SD̃ denotes the Szegő kernel of D̃. The zero point process ZX
D̃

is the DPP such

that the correlation kernel is given by the Bergman kernel K
D̃

of D̃. This DPP is conformally
invariant in the following sense. If D ( C is another simply connected domain with analytic
boundary, and

f : D → D̃

is a conformal transformation, then for ZXD
=
∑

i δZi ,

∑

i

δf−1(Zi) =: f∗ZX
D̃

d
= ZXD

.

That is, f∗ZX
D̃

is a DPP such that the correlation kernel is equal to the Bergman kernel KD of D.

We can say that the zero point process of Peres and Virág [63] is a conformal invariant DPP.

2.4 Proof of Theorem 2.11

2.4.1 Edelman-Kostlan formulas and second log-derivatives of Szegő kernels

For the DPP of Peres and Virág the Edelman–Kostlan formula [20] gives the density of ZXD

with respect to m/π as

ρ1D,PV(z) =
1

4
∆ logSD(z, z), z ∈ D,

where ∆ := 4∂z∂z. Moreover, we have the equality

KD(z, w) = ∂z∂w logSD(z, w) = SD(z, w)2, z, w ∈ D. (2.78)
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As explained above (2.11), this gives an example of the general formula

SD(z, w)2 = KD(z, w), z, w ∈ D, (2.79)

which is establised for the kernels on any simply connected domain D ( C.
Here we have reported our work to generalize the above to a family of GAFs and their zero

point processes on the annulus Aq. We can prove the following [36].

Proposition 2.20 For r > 0, the following equality holds,

∂z∂w logSAq(z, w; r) =
θ(−r)

θ(−r(zw)2)
SAq (z, w; rzw)2, z, w ∈ Aq. (2.80)

In particular,

∆ log SAq(z, z; r) = 4
θ(−r)

θ(−r|z|4)SAq(z, z; r|z|2)2, z ∈ Aq. (2.81)

By comparing the expression (2.69) for the density obtained from Theorem 2.11 with (2.81) in
Proposition 2.20, we can recover the Edelman–Kostlan formula as follows,

ρ1Aq
(z; r) =

θ(−r)
θ(−r|z|4)SAq (z, z; r|z|2)2 =

1

4
∆ log SAq(z, z; r), z ∈ Aq.

However, (2.78) does not hold for the weighted Szegő kernel for H2
r (Aq). As shown by (2.80), the

second log-derivative of SAq(z, w; r) cannot be expressed by SAq (z, w; r) itself but a new function
SAq(z, w; rzw) should be introduced.

In addition the proportionality between the square of the Szegő kernel and the Bergman kernel
(2.79), which holds as (2.79) on D, is no longer valid for the point processes on Aq The following

are verified [36]. A CONS for the Bergman space on Aq is given by {ẽ(q)n (z)}n∈Z where we set

ẽ(q)n (z) =





√
n+ 1

1 − q2(n+1)
zn, n ∈ Z \ {−1},

√
1

−2 log q
z−1, n = −1.

The Bergman kernel of Aq is then given by

KAq (z, w) := kL2
B
(Aq)(z, w) =

∑

n∈Z
ẽ(q)n (z)ẽ

(q)
n (w)

= − 1

2 log q

1

zw
+

1

zw

∑

n∈Z\{0}

n

1 − q2n
(zw)n, z, w ∈ Aq. (2.82)

The Weierstrass ℘-function is defined by

℘(φ) = − 1

12
+ 2

∞∑

n=1

q2n

(1 − q2n)2
−

∞∑

n=−∞

e
√
−1φq2n

(1 − e
√
−1φq2n)2

. (2.83)

Then (2.82) is expressed as as [9]

KAq (z, w) = − 1

2 log q

1

zw
− 1

zw

(
℘(φzw) +

P (q)

12

)
, z, w ∈ Aq, (2.84)
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where we have used the notation,

z = e
√
−1φz ⇐⇒ φz = −

√
−1 log z, (2.85)

and

P (q) = 1 − 24
∞∑

n=1

q2n

(1 − q2n)2
.

We can prove the equality [36]

SAq(z, w)2 = KAq (z, w) +
a(q)

zw
, z, w ∈ Aq, (2.86)

where

a(q) = −2
∑

n∈N

(−1)nnqn

1 − q2n
+

1

2 log q
. (2.87)

2.4.2 Hammersley formula and Shirai’s Proposition

We recall a general formula for correlation functions of zero point process of a GAF, which is called
the Hammersley formula in [63], but here we use a slightly different expression given by Shirai

(Proposition 6.1 of [75]). Let ∂z∂w := ∂2

∂z∂w .

Proposition 2.21 (Shirai [75]) The correlation functions of ZXD
of the GAF XD on D ( C

with covariance kernel SD(z, w) are given by

ρnD(z1, . . . , zn) =
per1≤i,j≤n

[
(∂z∂wS

z1,...,zn
D )(zi, zj)

]

det1≤i,j≤n

[
SD(zi, zj)

] , n ∈ N, z1, . . . , zn ∈ D,

with respect to a reference measure λ, whenever det1≤i,j≤n[SD(zi, zj)] > 0. Here {Sz1,...,zn
D (zi, zj)}

denote the conditional kernels.

Here we abbreviate γq{zℓ}nℓ=1

given by (2.53) to γqn. Then (2.54) gives

Sz1,...,zn
Aq

(z, w; r) = SAq (z, w; r

n∏

ℓ=1

|zℓ|2)γqn(z)γqn(w)

for z, w, z1, . . . , zn ∈ Aq. By (2.57) of Lemma 2.7, this formula gives

(∂z∂wS
z1,...,zn
Aq

)(zi, zj ; r) = SAq

(
zi, zj ; r

n∏

ℓ=1

|zℓ|2
)
γqn

′(zi)γ
q
n
′
(zj).

Therefore, Proposition 2.21 gives now

ρnAq
(z1, . . . , zn; r) =

per1≤i,j≤n

[
SAq

(
zi, zj ; r

∏n
ℓ=1 |zℓ|2

)]∏n
k=1 |γ

q
n
′
(zk)|2

det1≤i,j≤n

[
SAq(zi, zj ; r)

] . (2.88)
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By (2.49) and (2.57) and (2.60) of Lemma 2.7, we see that

n∏

i=1

|γqn′(zi)|2 =
n∏

i=1

∣∣∣
( ∏

1≤j≤n,j 6=i

hqzj(zi)
)
hqzi

′(zi)
∣∣∣
2

=
n∏

i=1

∣∣∣
( ∏

1≤j≤n,j 6=i

zi
θ(zj/zi)

θ(zjzi)

) q20
θ(|zi|2)

∣∣∣
2

=

∣∣∣∣∣
q2n0
∏

1≤i<j≤n ziθ(zj/zi) ·
∏

1≤i′<j′≤n zj′θ(zi′/zj′)∏n
i=1

∏n
j=1 θ(zizj)

∣∣∣∣∣

2

.

By (2.27), ziθ(zj/zi) = zi(−zj/zi)θ(zi/zj) = −zjθ(zi/zj). Hence this is written as

n∏

i=1

|γqn′(zi)|2 = q4n0

∣∣∣∣∣
(−1)n(n−1)/2

(∏
1≤i<j≤n zjθ(zi/zj)

)2
∏n

i=1

∏n
j=1 θ(zizj)

∣∣∣∣∣

2

= q4n0

(∏
1≤i<j≤n |zj |2θ(zi/zj , zi/zj)∏n

i=1

∏n
j=1 θ(zizj)

)2

. (2.89)

The following identity is known as the Frobenius determinantal formula, which is an ellip-
tic extension of the Cauchy determinantal formula due Frobenius (see Theorem 1.1 in [27],
Theorem 66 in [45], Corollary 4.7 in [67]),

det
1≤i,j≤n

[
θ(txiaj)

θ(t, xiaj)

]
=
θ(t
∏n

k=1 xkak)

θ(t)

∏
1≤i<j≤n xjajθ(xi/xj , ai/aj)∏n

i=1

∏n
j=1 θ(xiaj)

.

By (2.39) in Proposition 2.4, we have

q2n0

∏
1≤i<j≤n |zj |2θ(zi/zj , zi/zj)∏n

i=1

∏n
j=1 θ(zizj)

=
θ(−s)

θ(−s∏n
ℓ=1 |zℓ|2)

det
1≤i,j≤n

[
SAq(zi, zj ; s)

]
, ∀s > 0. (2.90)

Then (2.89) is written as

n∏

i=1

|γqn′(zi)|2 =
θ(−r)

θ(−r∏n
ℓ=1 |zℓ|2)

det
1≤i,j≤n

[SAq(zi, zj ; r)]

× θ(−r∏n
ℓ=1 |zℓ|2)

θ(−r∏n
ℓ=1 |zℓ|4)

det
1≤i,j≤n

[
SAq

(
zi, zj ; r

n∏

ℓ=1

|zℓ|2
)]

=
θ(−r)

θ(−r∏n
ℓ=1 |zℓ|4)

det
1≤i,j≤n

[SAq(zi, zj ; r)] det
1≤i,j≤n

[
SAq

(
zi, zj ; r

n∏

ℓ=1

|zℓ|2
)]
.

Applying the above to (2.88), the correlation functions in Theorem 2.11 are obtained.

2.5 Unfolded 2-correlation function of PDPP

By the determinantal factor in perdet (2.67) the PDPP shall be negatively correlated when distances
of points are short in the domain Aq. The effect of the permanental part in perdet will appear in
long distances. In order to clarify this fact, we study the two-point correlation function normalized
by the product of one-point functions,

gAq(z, w; r) :=
ρ2Aq

(z, w; r)

ρ1Aq
(z; r)ρ1Aq

(w; r)
, (z, w) ∈ A2

q, (2.91)
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where ρ1Aq
and ρ2Aq

are explicitly given by (2.69) and (2.71), respectively. This function is simply

called an intensity ratio in [63], but here we call it an unfolded 2-correlation function following
a terminology used in random matrix theory [21].

We have proved the following (see Fig.5) [36].

Theorem 2.22 (i) When 0 < q < 1, in the short distance, the correlation is generally repulsive
in common with DPPs.

(ii) There exists a critical value

r0 = r0(q) ∈ (q, 1) for each q ∈ (0, 1)

such that if r ∈ (r0, 1) positive correlation emerges between zeros when the distance
between them is large enough within Aq.

(iii) The limits gD(z, w; r) := limq→0 gAq (z, w; r), z, w ∈ D× and rc := limq→0 r0(q) are well-
defined, and rc is positive. When r ∈ [0, rc) all positive correlations vanish in gD(z, w; r),
while when r ∈ (rc,∞) positive correlations can survive.

0.0 0.2 0.4 0.6 0.8 1.0
q0.0

0.2

0.4

0.6

0.8

1.0

r

Figure 5: The critical curve r = r0(q) mentioned in Theorem 2.22 (ii) is numerically plotted (in
red) in the fundamental cell Ω := {(q, r) : q ∈ (0, 1), q ≤ r ≤ 1} in the parameter space, which is
located between the diagonal line r = q and the horizontal line r = 1. The parabolic curve rc + cq2

given in [36] and the line 1− (1 − q)/2 are also dotted, which approximate r = r0(q) well for q & 0
and q . 1, respectively.
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2.6 Exercises 2

2.6.1 Exercise 2.1

(1) By the definition of the theta function

θ(z; p) := (z, p/z; p)∞ = (z; p)∞(p/z; p)∞

=
∞∏

i=1

{
(1 − zpi)(1 − pi+1/z

}
, (2.92)

prove the inversion formula

θ(1/z; p) = −1

z
θ(z; p) (2.93)

and the quasi-periodicity property

θ(pz; p) = −1

z
θ(z; p). (2.94)

(2) By direct calculation following the definition (2.92), verify the equalities,

θ(ζ; p3)θ(ζp; p3)θ(ζp2; p3) = θ(ζ; p), (2.95)

θ(ζ; p)θ(ζω3; p)θ(ζω
2
3; p) = θ(ζ3; p3), ζ ∈ C×, (2.96)

where ω3 is a primitive 3rd root of unity.

(3) Let x = e−2ia, y = e−2ib, u = e−2ic, and v = e−2id in the Weierstrass addition formula

θ(xy, x/y, uv, u/v; p) − θ(xv, x/v, uy, u/y; p) =
u

y
θ(yv, y/v, xu, x/u; p). (2.97)

Consider the limit p→ 0 and derive the following trigonometric equality,

sin(a+ b) sin(a− b) sin(c+ d) sin(c− d)

− sin(a+ d) sin(a− d) sin(c+ b) sin(c− b)

= sin(b+ d) sin(b− d) sin(a+ c) sin(a− c). (2.98)

Show that (2.98) is readily verified if we use the following addition formulas of trigonometric
functions,

sin(a± b) = sin a cos b± cos a sin b. (2.99)

2.6.2 Exercise 2.2

Consider the weighted Szegő kernel of Aq := {z ∈ C : q < |z| < 1}, q ∈ (0, 1) expressed using the
theta function

SAq(z, w; r) =
q20θ(−rzw)

θ(−r, zw)
, z, w ∈ Aq, r > 0, (2.100)

where
q0 :=

∏

n∈N
(1 − q2n) = (q2; q2)∞. (2.101)
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Schottky’s theorem asserts that the group of conformal transformations from Aq to itself is gener-
ated by the rotations

Rθ(z) := e
√
−1θz, θ ∈ [0, 2π), (2.102)

and the q-inversions

Tq(z) :=
q

z
. (2.103)

(1) Show that the rotational invariance is obvious.

(2) Prove the following equality,

√
T ′
q(z)

√
T ′
q(w)SAq(Tq(z), Tq(w); r) =

q

r
SAq(z, w; q2/r). (2.104)

Note that if r = q the weighted Szegő kernel is reduced to the original Szegő kernel, SAq(z, w) =
SAq (z, w; q). In this case the above becomes

√
T ′
q(z)

√
T ′
q(w)SAq(Tq(z), Tq(w)) = SAq(z, w). (2.105)

Hence we can conclude that the original Szegő kernel, SAq(z, w) = SAq(z, w; q), is invariant
under conformal transformations from Aq to itself.

2.6.3 Exercise 2.3

Consider the DPP of Peres and Virág, ZXD
, whose correlation kernel with respect to m/π is given

by the Bergman kernel of D, KD;

ρnD,PV(z1, . . . , zn) = det
1≤i,j≤n

[KD(zi, zj)], n ∈ N, z1, . . . , zn ∈ D,

with KD(z, w) =
1

(1 − zw)2
, z, w ∈ D. (2.106)

(1) Prove the following equality,

ρ1D,PV(z) =
1

4
∆ log SD(z, z), z ∈ D, (2.107)

where ∆ := 4∂z∂z and SD denotes the Szegő kernel of D,

SD(z, w) =
1

1 − zw
, z, w ∈ D. (2.108)

This equality is called the Edelman–Kostlan formula.

(2) Show that the following general equalities are established,

KD(z, w) = ∂z∂w log SD(z, w) = SD(z, w)2, z, w ∈ D. (2.109)
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2.6.4 Exercise 2.4

Consider the GAF and the permanenta-determinantal point process on Aq discussed there.

(1) Prove the equalities,

∂z∂w log SAq(z, w; r) =
θ(−r)

θ(−r(zw)2)
SAq(z, w; rzw)2, z, w ∈ Aq. (2.110)

In particular,

∆ logSAq (z, z; r) = 4
θ(−r)

θ(−r|z|4)
SAq(z, z; r|z|2)2, z ∈ Aq. (2.111)

(2) The correlation function of the permanental-detaeminantal point process on Aq is generally
given by

ρnAq
(z1, . . . , zn; r) =

θ(−r)
θ(−r∏n

k=1 |zk|4)
perdet
1≤i,j≤n

[
SAq

(
zi, zj ; r

n∏

ℓ=1

|zℓ|2
)]

(2.112)

for every n ∈ N and z1, . . . , zn ∈ Aq with respect to m/π. Show that the Edelman–Kostran
formula is also satisfied.

3 Multiple Schramm–Loewner Evolution/Gaussain Free Field Cou-

pling

3.1 Multiple Schramm–Loewner Evolution

3.1.1 Loewner equations for single-slit and multi-slit

Let D be a simply connected domain in C which does not complete the plane; D ( C. Its boundary
is denoted by ∂D. We consider a slit in D, which is defined as a trace η = {η(t) : t ∈ (0,∞)} of a
simple curve η(t) ∈ D, 0 < t <∞;

η(s) 6= η(t) for s 6= t.

We assume that the initial point of the slit is located in ∂D, ∃η(0) := limt→0 η(t) ∈ ∂D. Let

η(0, t] := {η(s) : s ∈ (0, t]} and Dη
t := D \ η(0, t], t ∈ (0,∞).

The Loewner theory [50] describes a slit η by encoding the curve into a time-dependent analytic
function gDη

t
: t ∈ (0,∞) such that

gDη
t

: conformal map Dη
t → D, t ∈ (0,∞).

By the Riemann mapping theorem, for D ( C and a point z0 ∈ D, there exists a unique
analytic function ϕ(z) in D, specified by ϕ(z0) = 0, ϕ′(z0) > 0, such that

ϕ : conformal map D → D,

where D denotes a unit disk; D := {z ∈ C : |z| < 1} (see (2.8) in the previous section). Loewner
gave a differential equation for gDη

t
in the case D = D, which is called the Loewner equation [50].

61



Since a special case of the Möbius transformation

m(z) :=
√
−1

α− z

α+ z
, |α| = 1,

maps D to the upper half complex plane H := {z ∈ C : Im z > 0} with m(0) =
√
−1,m(∞) =

−
√
−1, we can apply the Loewner theory to the case with D = H, in which [46]

η := {η(t) : t ∈ (0,∞)} is a simple curve,

η(0) := lim
t→0

η(t) = 0 ∈ R,

η(0, t] ⊂ H, ∀t ∈ (0,∞),

lim
t→∞

η(t) = ∞.

For each time t ∈ (0,∞),
H

η
t := H \ η(0, t] (3.1)

is a simply connected domain in C and there exists a unique analytic function gHη
t

such that

gHη
t

: conformal map H
η
t → H,

which satisfies the condition

gHη
t
(z) = z +

ct
z

+ O(|z|−2) as z → ∞

for some ct > 0, in which the coefficient of z is unity and no constant term appears. This is called
the hydrodynamic normalization. The coefficient ct gives the half-plane capacity of η(0, t]
and denoted by hcap(η(0, t]). The following has been shown (see [46, 47]).

Theorem 3.1 Let η be a slit in H for which the parameterization by t is arranged so that

ct = hcap(η(0, t]) = 2t, t ∈ (0,∞).

Then there exists a unique continuous driving function V (t) ∈ R, t ∈ (0,∞) such that the solution
gt of the differential equation

dgt(z)

dt
=

2

gt(z) − V (t)
, t ≥ 0, (3.2)

under the initial condition
g0(z) = z ∈ H

gives gt = gHη
t
, t ∈ (0,∞).

The equation (3.2) is called the chordal Loewner equation. Note that at each time t ∈ (0,∞),
the tip of slit η(t) and the value of V (t) satisfy the following relations,

V (t) = lim
z→0,

η(t)+z∈Hη
t

gHη
t
(η(t) + z) ⇐⇒ η(t) = lim

z→0,
z∈H

g−1
H

η
t
(V (t) + z), t ≥ 0. (3.3)

Moreover, V (t) = lim
s<t,s→t

gHη
s
(η(t)) and t 7→ V (t) is continuous (see, for instance, Lemma 4.2 in

[47]). We write

gHη
t
(η(t)) = V (t) ∈ R, ⇐⇒ η(t) = g−1

H
η
t
(V (t)) ∈ ∂Hη

t , t ≥ 0, (3.4)

in the sense of (3.3).
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Example 3.2 When the driving function is identically zero; V (t) ≡ 0, t ∈ (0,∞), the chordal
Loewner equation dgHη

t
(z)/dt = 2/gHη

t
(z), t ≥ 0 is solved under the initial condition gHη

0
(z) =

z ∈ H as gHη
t
(z)2 = 4t + z2, t ≥ 0. In this simple case, (3.3) gives η(t) = 2

√
−1t1/2, t ≥ 0.

That is, the slit η(0, t], t > 0 is a straight line along the imaginary axis starting from the origin,
η(0) = limt→0 η(t) = 0, and growing upward as time t is passing.

Example 3.3 The above example can be extended by introducing one parameter α ∈ (0, 1) as
follows. Let κ = κ(α) = 4(1 − 2α)2/{α(1 − α)}, and consider the case such that

V (t) =

{√
κt, if α ≤ 1/2,

−
√
κt, if α > 1/2.

In this case, the inverse of gt is solved as g−1
H

η
t
(z) =

(
z + 2

√
α

1−α

√
t
)1−α (

z − 2
√

1−α
α

√
t
)α

, and the

slit is obtained as

η(t) = g−1
H

η
t
(V (t)) = 2

(
1 − α

α

)1/2−α

e
√
−1απt1/2, t ≥ 0.

The slit grows from the origin along a straight line in H which makes an angle απ with respect to
the positive direction of the real axis. When α = 1/2, this is reduced to the result mentioned in
Example 3.2. More detail for this example, see Example 4.12 in [47] and Section 2.2 in [31].

Theorem 3.1 can be extended to the situation such that η in H is given by a multi-slit [68, 34]. Let
N ∈ N := {1, 2, . . . } and assume that we have N slits ηi = {ηi(t) : t ∈ (0,∞)} ⊂ H, i = 1, . . . , N ,
which are simple curves, disjoint with each other, ηi ∩ ηj = ∅, i 6= j, starting from N distinct
points limt→0 ηi(t) =: ηi(0) on R; η1(0) < · · · < ηN (0), and all going to infinity; limt→∞ ηi(t) = ∞,
i = 1, . . . , N . A multi-slit is defined as a union of them,

⋃N
i=1 ηi, and

H
η
t := H \

N⋃

i=1

ηi(0, t] (3.5)

for each t > 0 with H
η
0 := H. For each time t ∈ (0,∞), Hη

t is a simply connected domain in C and
then there exists a unique analytic function gHη

t
such that

gHη
t

: conformal map H
η
t → H,

satisfying the hydrodynamic normalization condition

gHη
t
(z) = z +

hcap(
⋃N

i=1 ηi(0, t])

z
+ O(|z|−2) as z → ∞.

Theorem 3.4 For N ∈ N, let
⋃N

i=1 ηi be a multi-slit in H such that

hcap
( N⋃

i=1

η(0, t]
)

= 2Nt, t ∈ (0,∞).
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Then there exists a set of weight functions wi(t) ≥ 0, t ≥ 0, i = 1, . . . , N satisfying
∑N

i=1 wi(t) =
1, t ≥ 0 and an N -variate continuous driving function V (t) = (V1(t), . . . , VN (t)) ∈ RN , t ∈ (0,∞)
such that the solution gt of the differential equation

dgt(z)

dt
=

N∑

i=1

2Nwi(t)

gt(z) − Vi(t)
, t ≥ 0, g0(z) = z, (3.6)

gives gt = gHη
t
, t ∈ (0,∞).

Roth and Schleissinger [68] called (3.6) the Loewner equation for the multi-slit
⋃N

i=1 ηi.
Similar to (3.3), the following relations hold,

Vi(t) = lim
z→0,

ηi(t)+z∈Hη
t

gHη
t
(ηi(t) + z) ⇐⇒ ηi(t) = lim

z→0,
z∈H

g−1
H

η
t
(Vi(t) + z), i = 1, . . . , N, t ≥ 0,

(3.7)

and we write for the multiple tips, ηi(t), i = 1, . . . , N , t ≥ 0,

gHη
t
(ηi(t)) = Vi(t) ∈ R, i = 1, . . . , N, t ≥ 0

in the sense of (3.7).

3.1.2 Schramm–Loewner evolution with parameter κ (SLEκ)

So far we have considered the problem such that, given time-evolution of a single slit η(0, t], t ≥ 0
or a multi-slit

⋃N
i=1 η(0, t], t ≥ 0 in H, time-evolution of the conformal map from H

η
t to H, t ≥ 0

is asked. The answers are given by the solution of the Loewner equation (3.2) in Theorem 3.1
for a single slit and by the solution of the multiple Loewner equation (3.6) in Theorem 3.4 for
a multi-slit, which are driven by a function (V (t))t≥0 and by a multi-variate function V (t) =
(V1(t), . . . , VN (t)) ∈ RN , t ≥ 0, respectively. The both processes are defined in R and deterministic:

single slit η(0, t] ∈ H, t ≥ 0 =⇒ driving function (V (t))t≥0 on R

multi-slit
⋃N

i=1 η(0, t] ∈ H, t ≥ 0 =⇒ multi-variate driving function (V (t))t≥0 on RN

For H with a single slit, Schramm considered an inverse problem in a probabilistic setting
[69]. He first asked a suitable family of driving stochastic processes (Y (t))t≥0 on R. Then he asked
the probability law of a random slit in H, which will be determined by the relations (3.3) from
(Y (t))t≥0 and the solution gt = gHη

t
, t ≥ 0 of the Loewner equation (3.2):

random curve η(0, t] ∈ H, t ≥ 0 ⇐= driving stochastic process (Y (t))t≥0 on R

Schramm argued that conformal invariance implies that the driving process (Y (t))t≥0 should
be a continuous Markov process which has in a particular parameterization independent
increments. Hence Y (t) can be a constant time change of a one-dimensional standard Brownian
motion (B(t))t≥0, and it is expressed as

(
√
κB(t))t≥0

(law)
= (B(κt))t≥0 with a parameter κ > 0. (3.8)
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The solution of the Loewner equation driven by Y (t) =
√
κB(t), t ≥ 0,

dgHη
t
(z)

dt
=

2

gHη
t
(z) −√

κB(t)
, t ≥ 0, gHη

0
(z) = z ∈ H, (3.9)

is called the chordal Schramm–Loewner evolution (chordal SLE) with parameter κ > 0 and
is written as SLEκ for short.

The following was proved by Lawler, Schramm, and Werner [48] for κ = 8 and by Rohde and
Schramm [66] for κ 6= 8.

Proposition 3.5 By (3.3), a chordal SLEκ gHη
t
, t ∈ (0,∞) determines a continuous curve η =

{η(t) : t ∈ (0,∞)} ⊂ H such that η(0) := limt↓0 η(t) = 0 and limt→∞ |η(t)| = ∞ with probability
one.

The continuous curve η determined by an SLEκ is called an SLEκ curve (or SLEκ trace)
The probability law of an SLEκ curve depends on κ. As a matter of fact, SLEκ curve becomes
self-intersecting and can touch the real axis R when κ > 4, so it is no more a slit, since a slit has
been defined as a trace of a continuous simple curve. When κ > 4, the domain H \ η(0, t] is divided
into many components, only one of which is unbounded. So here we change the definition (3.1) of
H

η
t , t ≥ 0 as follows,

H
η
t := the unbounded component of H \ η(0, t], t ≥ 0. (3.10)

Then
gHη

t
(z) : conformal map H

η
t → H, t ≥ 0.

We also define
Kη

t := H \Hη
t , t ≥ 0, (3.11)

and call it the SLE hull.
There are three phases of an SLEκ curve as shown by the follows (see Fig.6).

Proposition 3.6 There are two critical values of κ;

κc = 4 and κc = 8.

(a) If 0 < κ ≤ κc = 4, then the SLEκ curve is simple and η = η(0,∞) ⊂ H with probability
one.

(b) If κc = 4 < κ < κc = 8, the SLEκ curve is self-intersecting, η ∩R 6= ∅, and touch the real
R with positive probability. Then ⋃

t∈[0,∞)

Kη
t = H,

but η[0,∞) ∩H 6= H.

(c) If κ ≥ κc = 8, then η is a space-filling curve;

η[0,∞) = H.
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0 0 0

(a) (b) (c)

Figure 6: Schematic pictures of SLEκ curves in (a) Phase 1 (0 < κ ≤ κc = 4), (b) Phase 2
(κc = 4 < κ < κc = 8), and (c) Phase 3 (κ ≥ κc = 8).

Remark 3.7 Consider BESD introduced in Section 1.4. We set Zz(t) = Xz(t) +
√
−1Y z(t) ∈

H \ {0}, t ≥ 0 and complexificate (1.45) as

dZz(t) = dB(t) +
D − 1

2

dt

Zz(t)
(3.12)

with the initial condition
Zz(0) = z = x +

√
−1y ∈ H \ {0}.

The crucial point of this complexification of Bessel flow is that the BM remains real, B(t) ∈
R, t ≥ 0. Then, there is an asymmetry between the real part and the imaginary part of the flow
in H,

dXz(t) = dB(t) +
D − 1

2

Xz(t)

(Xz(t))2 + (Y z(t))2
dt, (3.13)

dY z(t) = −D − 1

2

Y z(t)

(Xz(t))2 + (Y z(t))2
dt. (3.14)

Assume D > 1. Then as indicated by the minus sign in RHS of (3.14), the flow is downward in
H. If the flow goes down and arrives at the real axis, the imaginary part vanishes, Y z(t) = 0,
then equation (3.13) is reduced to be the same equation as equation (1.45) for the BESD, which
is now considered for R \ {0} = R+ ∪ R−. If D > Dc = 2, by Theorem 1.2 (ii), the flow on
R \ {0} is asymptotically outward, Xz(t) → ±∞ as t → ∞. Therefore, the flow on H will be
described as shown by Fig. 3.1.2. The behavior of flow should be, however, more complicated
when Dc = 3/2 < D < Dc and 1 < D < Dc = 3/2. For z ∈ H \ {0}, t ≥ 0, put

ĝt(z) := Zz(t) +B(t). (3.15)

Then, Eq. (3.12) is rewritten for ĝt(z) as

∂ĝt(z)

∂t
=
D − 1

2

1

ĝt(z) −B(t)
, t ≥ 0. (3.16)
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x Re z

Im z

Figure 7: A schematic picture of complexificated Bessel flow on H \ {0} for D > 2.

Put

κ =
4

D − 1
⇐⇒ D = 1 +

4

κ
, (3.17)

and set
gt(z) = ĝκt(z)

in (3.16). Then we have the equation in the form

∂gt(z)

∂t
=

2

gt(z) −
√
κB(t)

, t ≥ 0. (3.18)

This is equal to the Schramm–Loewner evolution (3.9). As a matter of fact, identification of
the SLEκ as a complexification of BES1+4/κ gives the proof of Proposition 3.6, in which simple
correspondence between two sets of critical values;

Dc = 2 ⇐⇒ κc = 4, Dc =
3

2
⇐⇒ κc = 8. (3.19)

More detailed description of the probability laws of an SLEκ curves at special values of κ, see, for
instance [47, 31, 40].

The highlight of the theory of SLE would be that, if the value of D is properly chosen, the prob-
ability law of γ realizes that of the scaling limit of important lattice paths studied in a statistical
mechanics model exhibiting critical phenomena or describing interesting fractal geometry
defined on an infinite discrete lattice. The following is a list of the correspondence (up to a con-
jecture) between the SLEκ paths with specified values of κ, and the names of lattice paths (with
the names of models studied in statistical mechanics and fractal physics), whose scaling limits are

67



described by the SLEκ paths. (See also [18, 17].)

SLE2 ⇐⇒ loop-erased random walk [48]

SLE8/3 ⇐⇒ self-avoiding walk [conjecture]

SLE3 ⇐⇒ Ising interface (critical Ising model) [13, 12]

SLE4 ⇐⇒ random contour curve (Gaussian free surface model) [70]

SLE16/3 ⇐⇒ FK–Ising interface (critical Ising model) [80, 12]

SLE6 ⇐⇒ percolation exploration process (critical percolation model) [79]

SLE8 ⇐⇒ random Peano curve (uniform spanning tree) [48]

Moreover, Beffara [6] determined the Hausdorff dimensions dHκ of the SLEκ curves as

dHκ =

{
1 +

κ

8
, κ ∈ (0, 8)

2, κ ≥ 8.
(3.20)

The relationship between the SLEκ and the conformal field theory has been clarified [4].
The central charge c and the scaling dimension (the highest weight) of representation of the
Virasoro algebra are related with the parameter κ of SLEκ as

c = cκ :=
(6 − κ)(3κ − 8)

2κ
, h = hκ :=

6 − κ

2κ
. (3.21)

3.1.3 Multiple SLE

For simplicity, we assume that wi(t) ≡ 1/N, t ≥ 0, i = 1, . . . , N in (3.6) in Theorem 3.4. Then the
Loewner equation for the multi-slit in H is written as

dgHη
t
(z)

dt
=

N∑

i=1

2

gHη
t
(z) − Yi(t)

, t ≥ 0, gHη
0
(z) = z ∈ H. (3.22)

Then we ask what is the suitable family of driving stochastic processes of N particles on R, Y (t) =
(Y1(t), . . . , YN (t)), t ≥ 0 [11, 5, 44, 24];

multiple SLEκ curves
N⋃

i=1

ηi(0, t] ∈ H, t ≥ 0

⇐= driving many-particle stochastic process (Y (t))t≥0 on RN ?

The same argument with Schramm [69] will give that Y (t) should be a continuous Markov pro-
cess. Moreover, Bauer, Bernard, and Kytölä [5], Graham [24], and Dubédat [15] argued that
(Yi(t))t≥0, i = 1, . . . , N are semi-martingales and the quadratic variations should be given by
d〈Yi, Yj〉t = κδijdt, t ≥ 0, 1 ≤ i, j ≤ N with κ > 0. Then we will be able to assume that the
system of SDEs for (Y (t))t≥0 is in the form,

dYi(t) =
√
κdBi(t) + Fi(Y (t))dt, t ≥ 0, i = 1, . . . , N, (3.23)

where (Bi(t))t≥0, i = 1, . . . , N are independent one-dimensional standard Brownian motions, κ > 0,
and {Fi(x)}Ni=1 are suitable functions of x = (x1, . . . , xN ) which do not explicitly depend on t.
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Y1(0) Y2(0) Y3(0) Y4(0) YN(0)

η1

η2

η3
η4

ηN

. . .

. . .

Figure 8: Schematic picture of multiple SLE curves ηi, i = 1, . . . , N in H driven by Y (t) =
(Y1(t), . . . , YN (t)), t ≥ 0. Here we assume that they are all simple and avoiding from each other in
H.

In the following, We will give a theory so that the driving process (Y (t))t≥0 should be a time
change of DYSβ with β = 8/κ to construct a proper multiple SLE. Here we define the Gaussian
free field (GFF) and its generalization called the imaginary surface with parameter χ, which are
considered as the distribution-valued random fields on H. Under the relation χ = 2/

√
κ−κ/

√
2, we

regard the SLE/GFF coupling studied by Dubédat, Sheffield, and Miller as a temporally stationary
field, and extend it to multiple cases. We prove that the multiple SLE/GFF coupling is established,
if and only if the driving N -particle process on R is identified with DYS8/κ.

3.2 Gaussian free field (GFF) with Dirichlet boundary condition

3.2.1 Bochner–Minlos Theorem

Here we start with the classical Bochner theorem, which states that a probability measure on a
finite dimensional Euclidean space is determined by a characteristic function which is a Fourier
transform of the probability measure. Note that we have identified the Fourier transform of the
transition probability density of BM (1.11) with the characteristic function of BM (1.12) in Section
1.1, and the multitime Laplace transforms of the joint probability distribution function (1.99)
with the generating function of correlation functions for DYS2 in Section 1.7.1. First we define a
functional of positive type.

Definition 3.8 Let V be a finite or infinite dimensional vector space. A function ψ : V → C is
said to be a functional of positive type if for arbitrary N ∈ N, ξ1, . . . , ξN ∈ V, and z1, . . . , zN ∈ C,
we have

N∑

n=1

N∑

m=1

ψ(ξn − ξm)znzm ≥ 0.
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Then the following is proved.

Lemma 3.9 Let ψ : V → C be a functional of positive type on a vector space V. Then it follows
that (i) ψ(0) ≥ 0, (ii) ψ(ξ) = ψ(−ξ) for all ξ ∈ V, and (iii) |ψ(ξ)| ≤ ψ(0) for all ξ ∈ V.

For x, y ∈ RN , the standard inner product is denoted by x · y and we write |x| :=
√
x · x. Let BN

be the family of Borel sets in RN . Then the following is known as the Bochner theorem.

Theorem 3.10 (Bochner theorem) Let ψ : RN → C be a continuous functional of positive type
such that ψ(0) = 1. Then there exists a unique probability measure P on (RN ,BN ) such that

ψ(ξ) =

∫

RN

e
√
−1x·ξ P(dx) for ξ ∈ RN .

If we consider the case that ψ(ξ) is given by Ψ(ξ) := e−|ξ|2/2, ξ ∈ RN , then the probability
measure P given by the Bochner theorem is the N-dimensional standard Gaussian measure,

P(dx) =
1

(2π)N/2
e−|x|2/2dx =

N∏

i=1

λN(0,1)(dxi), x = (x1, . . . , xN ) ∈ RN .

Hence we can say that the finite-dimensional standard Gaussian measure P is determined by the
characteristic function Ψ(ξ) as

Ψ(ξ) =

∫

RN

e
√
−1x·ξP(dx) = e−|ξ|2/2 for ξ ∈ RN .

Now consider the case that H is an infinite dimensional Hilbert space with inner product
〈·, ·〉 = 〈·, ·〉H with ‖x‖ = ‖x‖H =

√
〈x, x〉H, x ∈ H. The dual space of H will be denoted by H∗.

Suppose that there were a probability measure P on H with a suitable σ-algebra such that

ψ(ξ) =

∫

H
e
√
−1〈x,ξ〉P(dx) = e−‖ξ‖2/2 for ξ ∈ H.

Let {en}∞n=1 be a complete orthonormal system (CONS) of H. If we set ξ = ten, t ∈ R for an
arbitrary n ∈ N, then ∫

H
e
√
−1t〈x,en〉P(dx) = e−t2/2, t ∈ R.

Since x ∈ H, we have 〈x, en〉 → 0 as n→ ∞. Therefore in the limit n→ ∞, the above equality gives
e−t2/2 = 1, which is a contradiction. This observation suggests that the application of the Bochner
theorem to an infinite dimensional space requires more consideration. The following arguments are
base on [3] and a note given by Koshida [43].

Let D ( C be a simply connected proper domain of C that is bounded. We consider the case
H = L2(D,µ(dz)) with 〈f, g〉 :=

∫
D f(z)g(z)dµ(z), f, g ∈ L2(D,µ(dz)), where µ(dz) is the Lebesgue

measure on D ⊂ C; µ(dz) = dRe zdIm z =
√
−1dzdz/2. Let ∆ be the Dirichlet Laplacian acting

on L2(D,µ(dz)). Then −∆ has positive discrete eigenvalues so that

− ∆en = λnen, en ∈ L2(D,µ(dz)), n ∈ N. (3.24)

We assume that the eigenvalues are labeled in a non-decreasing order; 0 < λ1 ≤ λ2 ≤ · · · . The
system of eigenvalue functions {en}n∈N forms a complete orthonormal system (CONS) of
L2(D). The following is known as the Weyl formula
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Lemma 3.11 Let D ( C be a simply connected finite domain. The eigenvalues {λn}n∈N of the
operator −∆ on D exhibit the following asymptotic behavior,

lim
n→∞

λn
n

= O(1).

For two functions f, g ∈ C∞
c (D), their Dirichlet inner product is defined as

〈f, g〉∇ :=
1

2π

∫

D
(∇f)(z) · (∇g)(z)µ(dz). (3.25)

The Hilbert space completion of C∞
c (D) with respect to this Dirichlet inner product will be denoted

by W (D). We write ‖f‖∇ =
√

〈f, f〉∇, f ∈ W (D). If we set un =
√

2π/λn en, n ∈ N, then by
integration by parts, we have

〈un, un〉∇ =
1

2π
〈un, (−∆)um〉 = δnm, n,m ∈ N.

Therefore {un}n∈N forms a CONS of W (D).
Let Ĥ(D) be the space of formal real infinite series in {un}n∈N. This is obviously isomorphic

to RN by setting Ĥ(D) ∋ ∑n∈N fnun 7→ (fn)n∈N ∈ RN. As a subspace of Ĥ(D), W (D) is isomor-

phic to ℓ2(N) ⊂ RN. For two formal series f =
∑

n∈N fnun, g =
∑

n∈N gnun ∈ Ĥ(D) such that∑
n∈N |fngn| <∞, we define their pairing as

〈f, g〉∇ :=
∑

n∈N
fngn.

In the case when f, g ∈ W (D), their pairing of course coincides with the Dirichlet inner product
(3.25).

Notice that, for any a ∈ R, the operator (−∆)a acts on Ĥ(D) as

(−∆)a
∑

n∈N
fnun :=

∑

n∈N
λanfnun, (fn)n∈N ∈ RN.

Using this fact, we define Ha(D) := (−∆)aW (D), a ∈ R, each of which is a Hilbert space with
inner product

〈f, g〉a := 〈(−∆)−af, (−∆)−ag〉∇, f, g ∈ Ha(D).

We write ‖ · ‖a :=
√

〈·, ·〉a, a ∈ R.

Example 3.12 When a = 1/2, we have

〈f, g〉1/2 =
〈

(−∆)−1/2f, (−∆)−1/2g
〉
∇

=
1

2π
〈f, g〉, f, g ∈ H1/2(D).

Therefore H1/2(D) = L2(D,µ(dz)).

We can prove the following two lemmas.

Lemma 3.13 Assume a < b. Then Ha(D) ⊂ Hb(D).
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Lemma 3.14 Let a ∈ R and fix h ∈ Ha(D). Then the assignment

〈h, ·〉∇ : H−a(D) → R such that H−a(D) ∋ f 7→ 〈h, f〉∇ ∈ R

is well-defined and continuous. In particular, Ha(D) and H−a(D) makes a dual pair of Hilbert
spaces with respect to the Dirichlet inner product 〈·, ·〉∇.

Remark 3.15 Since H1/2(D) = L2(D, ν(dz)) as mentioned in Example 3.12, the members of
Ha(D) with a > 1/2 cannot be functions, but are distributions.

Define
E(D) :=

⋃

a>1/2

Ha(D). (3.26)

Then its dual Hilbert space is identified with E(D)∗ :=
⋂

a<−1/2 Ha(D) by Lemma 3.14, and

E(D)∗ ⊂W (D) ⊂ E(D)

is established (by definition and Lemma 3.13). Here (E(D)∗,W (D), E(D)) is called a Gel’fand
triple. We set ΣE(D) = σ({〈·, f〉∇ : f ∈ E(D)∗}). On such a setting, the following is obtained.
This theorem is the extension of the Bochner theorem (Theorem 3.10) and is called the Bochner–
Minlos theorem (see, for instance, [25, 73, 3]).

Theorem 3.16 (Bochner–Minlos theorem) Let ψ be a continuous function of positive type
on W (D) such that ψ(0) = 1. Then there exists a unique probability measure P on (E(D),ΣE(D))
such that

ψ(f) =

∫

E(D)
e
√
−1〈h,f〉∇P(dh) for f ∈ E(D)∗. (3.27)

Under certain conditions on ψ, the domain of function f for (3.27) can be extended from E(D)∗

to W (D). It is easy to verify that the functional

Ψ(f) := e−‖f‖2∇/2 (3.28)

satisfies the conditions. Then the following holds with a probability measure P on (E(D),ΣE(D)),

Ψ(f) =

∫

E(D)
e
√
−1〈h,f〉∇P(dh) = e−‖f‖2∇/2 for f ∈W (D). (3.29)

Definition 3.17 (Dirichlet boundary GFF) A Gaussian free field (GFF) with Dirich-
let boundary condition is defined as a pair ((ΩGFF,FGFF,PGFF),H) of a probability space
(ΩGFF,FGFF,PGFF) and an isometry

H : W (D) → L2(ΩGFF,FGFF,PGFF)

such that each H(f), f ∈W (D) is a Gaussian random variable.
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For each f ∈W (D), (3.29) gives a Gaussian random variable H(f) := 〈H, f〉∇ for the variable
h ∈ E(D) by

E(D) ∋ h 7→ 〈h, f〉∇ ∈ L2(E(D),ΣE(D),P).

In this way, (3.29) ensures that the pair of of the probability space

(ΩGFF,FGFF,PGFF) := (E(D),ΣE(D),P)

with the isometry H, ((E(D),ΣE(D),P),H) gives a GFF with Dirichlet boundary condition. We of-
ten just call H a Dirichlet boundary GFF without referring to the probability space (E(D),ΣE(D),P).
By this definition, (3.29) is written as

EGFF[e
√
−1〈H,f〉∇ ] = e−‖f‖2∇/2, f ∈W (D). (3.30)

This determines all the moments of the family of Gaussian random variables {〈H, f〉∇ : f ∈W (D)}.
For examples, the covariance is given by

Cov[〈H, f〉∇, 〈H, g〉∇] := EGFF
[
〈H, f〉∇〈H, g〉∇

]
= 〈f, g〉∇, f, g ∈W (D). (3.31)

In particular, the variance is written as

Var[〈H, f〉∇] := EGFF
[
〈H, f〉2∇

]
= ‖f‖2∇, f ∈W (D).

By introducing a parameter θ ∈ R, and by replacing f → θf in (3.30), the above result implies the
following useful formula.

Lemma 3.18 For the family of centered (mean zero) Gaussian random variables {〈H, f〉∇ :
f ∈W (D)} given by the Dirichlet boundary GFF,

EGFF[e
√
−1θ〈H,f〉∇ ] = exp

(
−θ

2

2
Var
[
〈H, f〉∇

])
, θ ∈ R, f ∈W (D). (3.32)

We call (3.32) the characteristic function of Dirichlet boundary GFF.

3.2.2 Conformal invariance of GFF

Assume that D,D′ ( C are simply connected domains and let ϕ : D′ → D be a conformal map.

Lemma 3.19 The Dirichlet inner product (3.25) is conformally invariant, that is,

∫

D
(∇f)(z) · (∇g)(z)µ(dz) =

∫

D′

(∇(f ◦ ϕ))(z) · (∇(g ◦ ϕ))(z)µ(dz) for f, g ∈ C∞
c (D).

From the above lemma, we see that the pull-back ϕ∗ : W (D) ∋ f 7→ f ◦ ϕ ∈ W (D′) is an
isomorphism. This allows one to consider a GFF on an unbounded domain. Namely, if D′ is
bounded on which a Dirichlet GFF H is defined, but D is unbounded, we can define a family
{〈ϕ∗H, f〉∇ : f ∈W (D)} by

〈ϕ∗H, f〉∇ := 〈H,ϕ∗f〉∇, f ∈W (D).
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The transformation rule of covariance is given by

Cov[〈ϕ∗H, f〉∇, 〈ϕ∗H, g〉∇] = EGFF
[
〈ϕ∗H, f〉∇〈ϕ∗H, g〉∇

]
= 〈ϕ∗f, ϕ∗g〉∇ = 〈f, g〉∇

= EGFF
[
〈H, f〉∇〈H, g〉∇

]
= Cov[〈H, f〉∇, 〈H, g〉∇]. (3.33)

Relying on the following formal computation

〈ϕ∗H, f〉∇ = 〈H,ϕ∗f〉∇ =
1

2π

∫

D′

(∇H)(z) · (∇f ◦ ϕ)(z)µ(dz)

=
1

2π

∫

D
(∇H ◦ ϕ−1)(z) · (∇f)(z)µ(dz)

we understand the equality ϕ∗H = H ◦ ϕ−1. By the fact (3.33) such that the covariance structure
does not change under a conformal map φ, we say that the GFF is conformally invariant.

3.2.3 The Green’s function of GFF

By a formal integration by parts, we see that

〈H, f〉∇ =
1

2π

∫

D
(∇H)(z) · (∇f)(z)µ(dz) =

1

2π

∫

D
H(z)(−∆f)(z)µ(dz)

=
1

2π
〈H, (−∆)f〉.

Motivated by this observation, we define

〈H, f〉 := 2π〈H, (−∆)−1f〉∇ for f ∈ D((−∆)−1), (3.34)

where D((−∆)−1) denotes the domain of (−∆)−1 in W (D). Note that if D is bounded, then (−∆)−1

is a bounded operator, but if D is unbounded, then (−∆)−1 is not defined on W (D). The action
of (−∆)−1 is expressed as an integral operator and the integral kernel is known as the Green’s
function. Namely,

((−∆)−1f)(z) =
1

2π

∫

D
GD(z, w)f(w)µ(dw), a.e. z ∈ D, f ∈ D((−∆)−1),

where GD(z, w) denotes the Green’s function of D under the Dirichlet boundary condition. Hence
the covariance of 〈H, f〉 and 〈H, g〉 with f, g ∈ D((−∆)−1) is written as

EGFF[〈H, f〉〈H, g〉] =

∫

D×D
f(z)GD(z, w)g(w)µ(dz)µ(dw). (3.35)

When we symbolically write

〈H, f〉 =

∫

D
H(z)f(z)µ(dz), f ∈ D((−∆)−1),

the covariance structure can be expressed as

EGFF[H(z)H(w)] = GD(z, w), z, w ∈ D, n 6= w.

From the formula (3.35), we see that C∞
c (D) ⊂ D((−∆)−1). In the following, we will consider the

family of random variables {〈H, f〉 : f ∈ C∞
c (D)} to characterize the GFF, H.
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Example 3.20 When D is the upper half plane H,

GH(z, w) = log

∣∣∣∣
z − w

z − w

∣∣∣∣ = log |z − w| − log |z − w|

= Re log(z − w) − Re log(z − w),

z, w ∈ H, z 6= w.

Example 3.21 When D is the first orthant O := {z : Re z > 0, Im z > 0},

GO(z, w) = log

∣∣∣∣
(z − w)(z + w)

(z − w)(z + w)

∣∣∣∣
= log |z − w| + log |z + w| − log |z −w| − log |z + w|,
= Re log(z − w) + Re log(z + w) − Re log(z − w) − Re log(z + w),

z, w ∈ O, z 6= w.

The conformal invariance of GFF implies that for a conformal map ϕ : D′ → D, we have the
equality,

GD′(z, w) = GD(ϕ(z), ϕ(w)), z, w ∈ D′. (3.36)

In the following, we will regard the upper half plane H as the representative of the simply connected
domain D ( C. Since each D′ ( C is specified by the conformal transformation ϕ : D′ → H, we
put this in the superscript and write

Gϕ(z, w) := Gϕ−1(H)(z, w) = GH(ϕ(z), ϕ(w)). (3.37)

By Example 3.20,

Gϕ(z, w) = log |ϕ(z) − ϕ(w)| − log |ϕ(z) − ϕ(w)|
= Re log(ϕ(z) − ϕ(w)) − Re log(ϕ(z) − ϕ(w)). (3.38)

3.3 GFF coupled with stochastic log-gase

3.3.1 GFF transformed by multiple SLE

We write the probability space of the multiple SLE as (ΩSLE,FSLE, (FSLE)≥0,P
SLE). Now we define

the direct product of this space and that for the Dirichlet boundary GFF,

(Ω,F ,P) = (ΩSLE × ΩGFF,FSLE ×FGFF,PSLE × PGFF). (3.39)

We consider the multiple SLE as well as GFF in this extended probability space, and the multiple
SLE is assumed to be adapted to the filtration,

Ft = FSLE
t × {∅,ΩGFF}, t ≥ 0.

We assume that the multiple SLE (3.22) driven by Y (t) = (Y1(t), . . . , YN (t)) under the initial
condition g0(z) = z ∈ H has a unique solution (gt)t≥0. Moreover, we assume that this solution can
be extended to R and determines

ηi := {ηi(t) : t ≥ 0}, i = 1, . . . , N
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by the equations
Yi(t) = gt(ηi(t)), i = 1, . . . , N. (3.40)

We consider the situation such that each ηi, i = 1, . . . , N make a continuous curve in H 1, and for
each t ≥ 0, we define

H
η
t := the unbounded component of H\

N⋃

i=1

ηi(0, t], t ≥ 0. (3.41)

Then the solution of (3.22) gives the conformal transformation from H
η
t to H and hence it is denoted

by gHη
t
.

In summary, we assume the following;

dgHη
t
(z)

dt
=

N∑

i=1

2

gHη
t
(z) − Yi(t)

, t ≥ 0, gHη
0
(z) = gH(z) = z ∈ H,

Yi(t) = gHη
t
(ηi(t)) := lim

z→ηi(t),z∈Hη
t

gHη
t
(z), i = 1, . . . , N, t ≥ 0,

gHη
t

: conformal : H
η
t → H. (3.42)

By the notation (3.37), we put

G
g
H
η
t (z, w) := GH(gHη

t
(z), gHη

t
(w)), t ≥ 0 (3.43)

and define the Dirichlet boundary GFF, gHη
t ∗H on H

η
t , t ≥ 0, so that its Green’s function is given

by (3.43). We can prove the following.

Proposition 3.22 For t ≥ 0,

dG
g
H
η
t (z, w)

dt
= −4

N∑

i=1

Im

(
1

gHη
t
(z) − Yi(t)

)
Im

(
1

gHη
t
(w) − Yi(t)

)
, z, w ∈ H

η
t . (3.44)

Proof. By (3.38),

dG
g
H
η
t (z, w)

dt
=

d

dt

[
Re log(gHη

t
(z) − gHη

t
(w)) − Re log(gHη

t
(z) − gHη

t
(w))

]

= Re
1

gHη
t
(z) − gHη

t
(w)

(
dgHη

t
(z)

dt
−
dgHη

t
(w)

dt

)

− Re
1

gHη
t
(z) − gHη

t
(w)

(
dgHη

t
(z)

dt
−
dgHη

t
(w)

dt

)
, t ≥ 0.

Since the multiple SLE (3.42) gives

dgHη
t
(z)

dt
−
dgHη

t
(w)

dt
=

N∑

i=1

2

gHη
t
(z) − Yi(t)

−
N∑

i=1

2

gHη
t
(w) − Yi(t)

= −2(gHη
t
(z) − gHη

t
(w))

N∑

i=1

1

(gHη
t
(z) − Yi(t))(gHη

t
(w) − Yi(t))

,

1This is proved by [34]. See Theorem 3.33 shown in Section 3.3.5.
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the above is written as

dG
g
H
η
t (z, w)

dt
= −2

N∑

i=1

Re
1

(gHη
t
(z) − Yi(t))(gHη

t
(w) − Yi(t))

+ 2
N∑

i=1

Re
1

(gHη
t
(z) − Yi(t))(gHη

t
(w) − Yi(t))

, t ≥ 0.

In general, the equality
Re ζw − Re ζw = 2Im ζ Imw

holds for ζ, w ∈ C, and hence (3.44) is proved.
For a given domain A ⊂ H, we assume that supp (f) of f ∈ C∞

c (H) satisfies supp (f) ⊂ A. Then
we define

E
g
H
η
t

A (f) :=

∫

A×A
f(z)G

g
H
η
t (z, w)f(w)µ(dz)µ(dw). (3.45)

By Proposition 3.22, we have

dE
g
H
η
t

A (f)

dt
= −

N∑

i=1

(∫

A
Im

2

gHη
t
(z) − Yi(t)

f(z)µ(dz)

)2

, (3.46)

It implies that E
g
H
η
t

A (f) is non-increasing function of t.

3.3.2 Imaginary surface and extended GFF

Consider a simply connected domain D ( C and write C∞
c (D) for the space of real smooth functions

on D with compact support. Assume h ∈ C∞
c (D) and consider a smooth vector field e

√
−1(h/χ+θ)

with parameters χ, θ ∈ R. Then a flow line along this vector field, η : (0,∞) ∋ t 7→ η(t) ∈ D,
starting from limt→0 η(t) =: η(0) = x ∈ ∂D is defined (if exists) as the solution of the ordinary
differential equation (ODE) [74, 54]

dη(t)

dt
= e

√
−1{h(η(t))/χ+θ}, t ≥ 0, η(0) = x. (3.47)

Let D̃ ( C be another simply connected domain and consider a conformal map ϕ : D̃ → D. Then
we define the pull-back of the flow line η by ϕ as η̃(t) = (ϕ−1 ◦ η)(t). That is, ϕ(η̃(t)) = η(t), and
the derivatives with respect to t of the both sides of this equation gives

ϕ′(η̃(t))
dη̃(t)

dt
=
dη(t)

dt

with the notation

ϕ′(z) :=
dϕ(z)

dz
.

We use the polar coordinate ϕ′(·) = |ϕ′(·)|e
√
−1argϕ′(·), where arg ζ of ζ ∈ C is a priori defined up to

additive multiples of 2π, and hence we have dη̃(t)/dt = e
√
−1{(h◦ϕ−χargϕ′)(η̃(t))/χ+θ}/|ϕ′(η̃(t))|, t ≥ 0.
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If we perform a time change t→ τ = τ(t) by putting t =
∫ τ
0 ds/|ϕ′(η̃(s))| and η̂(t) := η̃(τ(t)), then

the above equation becomes

dη̂(t)

dt
= e

√
−1{(h◦ϕ−χargϕ′)(η̂(t))/χ+θ}, t ≥ 0.

Since a time change preserves the image of a flow line, we can identify h on D and h ◦ ϕ− χargϕ′

on D̃ = ϕ−1(D). In [74, 54, 55, 56, 57], such a flow line is considered also in the case that h is
given by an instance of a GFF defined as follows.

Definition 3.23 Let D ( C be a simply connected domain and H be a Dirichlet boundary GFF
on D. A GFF on D is a random distribution h of the form

h = H + u,

where u is a deterministic harmonic function on D.

Since a GFF is not function-valued, but it is a distribution-valued random field (see Remark
4.1 in Section 3.2), the ODE in the form (3.47) no longer makes sense mathematically in the classical
sense. Using the theory of SLE, however, the notion of flow lines was generalized as follows [71, 72].

Consider the collection

S :=

{
(D,h)

∣∣∣∣∣
D(C: simply connected

h: GFF on D

}
.

Fixing a parameter χ ∈ R, we define the following equivalence relation in S.

Definition 3.24 Two pairs (D,h) and (D̃, h̃) ∈ S are χ-equivalent if there exists a conformal
map ϕ : D̃ → D and

h̃
(law)
= ϕ∗h− χargϕ′.

In this case, we write (D,h) ∼ (D̃, h̃).

We call each element belonging to the equivalence class S/ ∼ an imaginary surface [54] (or an
AC surface [74]; (AC means a combination of an altimeter and a compass.) That is, in this
equivalence class, a conformal map ϕ causes not only a coordinate change of a GFF as h 7→ ϕ∗h
associated with changing the domain of definition of the field as D 7→ ϕ−1(D), but also an addition
of a deterministic harmonic function −χargϕ′ to the field. Notice that this definition depends on
one parameter χ ∈ R.

3.3.3 Complex-valued logarithmic potentials and local martingales

Assume that the driving process (Y (t))t≥0 of the multiple SLE is given by (3.23), that is

dYi(t) =
√
κdBi(t) + Fi(Y (t))dt, t ≥ 0, i = 1, . . . , N, (3.48)

Now for z ∈ C, yi ∈ R, i = 1, . . . , N , we consider a sum of complex-valued logarithmic
potentials [32, 33, 34, 42],

Φ(z,y) :=
N∑

i=1

log(z − yi), (3.49)
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and consider a stochastic process (Φ(gHη
t
(z),Y (t)))t≥0. It should be noted that introduction of

a complex-valued logarithmic potential in the form log(z − y) has been reported in the previous
papers [16, 72, 29] in order to establish the coupling between the original SLEκ and the extended
GFFs. In this sense, the present generalization for the multiple SLE/GFF coupling seems to be
very straightforward. But this generalization is nontrivial. Moreover, it was shown by [42] that
this choice is the only possibility to obtain the multiple SLE/GFF coupling when κ 6= 4. See also
[29] for the consideration from the viewpoint of conformal field theory.

Since

∂

∂z
log(z − x) =

1

z − x
,

∂

∂x
log(z − x) = − 1

z − x
,

∂2

∂x2
log(z − x) = − 1

(z − x)2
,

Itô’s formula (1.19) with the multiple SLEκ (3.22) gives

d log(gHη
t
(z) − Yi(t)) =

1

gHη
t
(z) − Yi(t)

[
dgHη

t
(z) − dYi(t)

]

=
1

gHη
t
(z) − Yi(t)


2

N∑

j=1

1

gHη
t
(z) − Yi(t)

dt−√
κdBi(t) − Fi(Y (t))dt




− 1

2

1

(gHη
t
(z) − Yi(t))2

κdt,

and hence we have

dΦ(gHη
t
(z),Y (t)) = −√

κ

N∑

i=1

1

gHη
t
(z) − Yi(t)

dBi(t) + 2

(
N∑

i=1

1

gHη
t
(z) − Yi(t)

)2

dt

−
N∑

i=1

1

gHη
t
(z) − Yi(t)

Fi(ξ)dt− κ

2

N∑

i=1

1

(ϕt(z) − Yi(t))2
dt. (3.50)

The factor appearing in the second term of RHS is written as

(
N∑

i=1

1

gHη
t
(z) − Yi(t)

)2

=
N∑

i=1

∑

1≤j≤N,j 6=i

1

(gHη
t
(z) − Yi(t))(gHη

t
(z) − Yj(t))

+
N∑

i=1

1

(gHη
t
(z) − Yj(t))2

= 2

N∑

i=1

1

gHη
t
(z) − Yi(t)

∑

1≤j≤N,
j 6=i

1

Yi(t) − Yj(t)
+

N∑

i=1

1

(gHη
t
(z) − Yj(t))2

. (3.51)

By differentiate the multiple SLE (3.22) with respect to z, we have

dg′
H

η
t
(z) = −2g′

H
η
t
(z)

N∑

i=1

1

(gHη
t
(z) − Yi(t))2

dt,

and hence the equality

d log g′Hη
t
(z) = −2

N∑

i=1

1

(gHη
t
(z) − Yi(t))2

dt

79



is established. Therefore, if (3.50) is multiplied by 2/
√
κ, then we obtain

2√
κ
dΦ(gHη

t
(z),Y (t)) = −2

N∑

i=1

1

gHη
t
(z) − Yi(t)

dBi(t)

+
2√
κ

N∑

i=1

1

gHη
t
(z) − Yi(t)


4

∑

1≤j≤N,
j 6=i

1

Yi(t) − Yj(t)
− Fi(Y (t))


 dt

− 1√
κ

(
2 − κ

2

)
d log g′Hη

t
(z). (3.52)

Comparing the above calculation result with the χ-equivalence

HD1

(law)
= ϕ∗HD2

− χargϕ′

defined by Definition 3.24, we find the following:

(i) if χ =
2√
κ
−

√
κ

2
,

then the imaginary part of the last term in RHS of (3.52) = −d
(
χarg g′Hη

t
(z)
)
,

(ii) if Fi(Y ) = 4
∑

1≤j≤N,
j 6=i

1

Yi(t) − Yj(t)
, i = 1, . . . , N, (3.53)

then the second term in RHS of (3.52) = 0. (3.54)

Remark 3.25 If we choose the drift term as (1.65), the system of SDEs of the driving process of
the multiple SLE (3.48) is determined as

dYi(t) =
√
κdBi(t) + 4

∑

1≤j≤N,
j 6=i

1

Yi(t) − Yj(t)
dt, t ≥ 0, i = 1, . . . , N, (3.55)

As we have already claimed that (
√
κB(t))t≥0

(law)
= (B(κt))t≥0, we perform a time change κt → t

and define X(t) = Y (κt), t ≥ 0. Then we have the following set of SDEs for (X(t))t≥0,

dXi(t) = dBi(t) +
4

κ

∑

1≤j≤N,
j 6=i

1

Xi(t) −Xj(t)
dt

⇐⇒ dXi(t) = dBi(t) +
β

2

∑

1≤j≤N,
j 6=i

1

Xi(t) −Xj(t)
dt, t ≥ 0, i = 1, . . . , N, (3.56)

with

β =
8

κ
. (3.57)

Hence, we can say that the N -particle system (Y (t))t≥0 satisfying (3.55) is a time change of the
Dyson model with β = 8/κ; DYS8/κ.
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We introduce the following notation,

ht(·) := − 2√
κ

Im Φ(gHη
t
(·),Y (t)) − χIm log gHη

t

′(·)

= − 2√
κ

N∑

i=1

arg (gHη
t
(·) − Yi(t)) − χarg gHη

t

′(·). (3.58)

The above observation implies the following.

Proposition 3.26 Assume (3.55), that is, the driving process of the multiple SLE is given by

DYS8/κ. If χ =
2√
κ
−

√
κ

2
, then (ht(·))t≥0 is a continuous local martingale and satisfies

dht(z) = 2

N∑

i=1

Im
1

gHη
t
(z) − Yi(t)

dBi(t), z ∈ H
η
t , t ∈ [0,∞). (3.59)

Remark 3.27 Between the central charge c = cκ given by (3.21) and χ = χκ :=
2√
κ
−

√
κ

2
, the

following simple relation is established,

cκ = 1 − 6χ2
κ. (3.60)

By this formula, for the SLE parameter κ > 0, cκ ≤ 1, and the maximum central charge cκ = 1 is
realized if and only if χκ = 0 ⇐⇒ κ = 4.

Comparing Proposition 3.26 with (3.44) in Proposition 3.22, we see that

d〈h·(z), h·(w)〉t = −dGg
H
η
t (z, w), z, w ∈ H

η
t , t ∈ [0,∞).

Moreover, with (3.46) we have the equality,

d〈〈h·, f〉, 〈h·, f〉〉t = −dE
g
H
η
t

A (f) for f ∈ C∞
c (H) with supp (f) ⊂ A ⊂ H. (3.61)

3.3.4 Extended GFF-valued stochastic process and its stationarity

Put

χ =
2√
κ
−

√
κ

2
,

and consider the following time-evolution of extended GFF,

Ht := gHη
t ∗H + ht, t ≥ 0. (3.62)

Remark 3.28 By Definition 3.23, a GFF added by a harmonic function has been called an ex-
tended GFF. The additional harmonic function in (3.62) is

arg (gHη
t
(·) − Yi(t)) = Im log(gHη

t
(·) − Yi(t)),
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η1(t)

η2(t)

η3(t) η4(t)

ηN(t)

. . .

. . .

A

Im z

Figure 9: Consider a domain A ⊂ H such that there is a gap between A and the real axis R.

For such A, we define τA := sup
{
t ≥ 0 : A ⊂ H

η
t

}
> 0 and consider Ht during the time period

t ∈ [0, τA].

which is not well-defined on the SLE curves ηi, i = 1, . . . , N . Hence, Ht can be regarded as an
extended GFF not in the whole H, but only on H

η
t , t ≥ 0, where we remember that H

η
t , t > 0 is

defined by (3.41), that is

H
η
t := the unbounded component of H\

N⋃

i=1

ηi(0, t], t ≥ 0.

We consider a domain A ⊂ H such that there is a gap between A and the real axis R. In this case,
if we set vA := inf{Im z : z ∈ A}, then vA ≥ ∃δ > 0. For such A, we define an (Ft)t≥0–stopping
time,

τA := sup
{
t ≥ 0 : A ⊂ H

η
t

}
. (3.63)

Then, τA > 0 and during the time period t ∈ [0, τA], A is separated from any SLE curve and the
multiple SLE gHη

t
is well defined in A, and hence (3.62) can be regarded as an extended GFF-valued

process. See Fig.3.3.4. Note that test functions f ∈ C∞
c (H) should be considered with the condition

supp (f) ⊂ A.

Under the restrictions mentioned in Remark 3.28, the following Proposition asserts that a kind
of stationarity is established if we couple the multiple SLE and GFF properly.

Proposition 3.29 Assume the following.

(A) (ht)t≥0 is a continuous local martingale and its quadratic covariation satisfies the equality,

d〈h·(z), h·(w)〉t = −dGg
H
η
t (z, w), z, w ∈ H

η
t , t ∈ [0,∞). (3.64)
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Let A be an arbitrary domain in H such that vA ≥ ∃δ > 0. With the (Ft)t≥0–stopping time τA
given by (3.63), put 0 < T < τA. Then for any f ∈ C∞

c (H) with supp (f) ⊂ A,

〈H0, f〉
(law)
= 〈Ht, f〉, t ∈ [0, T ]. (3.65)

Proof. Introduce a real parameter θ ∈ R and consider the characteristic function for 〈Ht, f〉,
E[e

√
−1θ〈Ht,f〉]. Here E denotes the expectation with respect to the joint probability law P of the

multiple SLE and GFF. ht(·) is Ft–measurable,

E
[
e
√
−1θ〈Ht,f〉

]
= E

[
E
[

exp(
√
−1θ〈gHη

t ∗H, f〉)
∣∣∣Ft

]
e
√
−1θ〈ht,f〉

]
.

Since supp (f) ⊂ A, by the definition (3.45) of E
g
H
η
t

A (f) Var[〈gHη
t ∗H, f〉] = E

g
H
η
t

A (f). Hence the

formula (3.32) of Lemma 3.18, which was concluded from the Bochner–Minlos theorem, gives

E
[

exp(
√
−1θ〈gHη

t ∗H, f〉)
∣∣∣Ft

]
= exp

(
−θ

2

2
E

g
H
η
t

A (f)

)

Then we obtain

E
[
e
√
−1θ〈Ht,f〉

]
= E

[
exp

(
−θ

2

2
E

g
H
η
t

A (f) +
√
−1θ〈ht, f〉

)]
. (3.66)

By Itô’s formula,

d exp

(
−θ

2

2
E

g
H
η
t

A (f) +
√
−1θ〈ht, f〉

)

=

{√
−1θd〈ht, f〉 −

θ2

2

(
dE

g
H
η
t

A (f) + d〈〈h·, f〉, 〈h·, f〉〉t
)}

exp

(
−θ

2

2
E

g
H
η
t

A (f) +
√
−1θ〈ht, f〉

)
.

By the assumption (A), (3.61) holds and we can conclude that exp
(
− θ2

2 E
g
H
η
t

A (f) +
√
−1θ〈ht, f〉

)

is an Ft-local martingale and that the characteristic function is given by its expectation. Therefore,
the characteristic function is time independent and given by its initial value,

E

[
exp

(
−θ

2

2
EgH

A (f) +
√
−1θ〈h0, f〉

)]
= E

[
e
√
−1θ〈H0,f〉

]
.

The proof of the equality (3.65) is complete.

3.3.5 Multiple SLE/GFF coupling realized by DYS8/κ

Definition 3.30 (multiple SLE/GFF coupling) For any domain A ⊂ H such that vA ≥ ∃δ >
0, define the (Ft)t≥0–stopping time τA by (3.63) and assume 0 < T < τA. Given the driving process
(Y (t))t≥0 for the multiple SLE, assume the equality

〈H0, f〉
(law)
= 〈Ht, f〉, t ∈ [0, T ]

for any f ∈ C∞
c (H) with supp (f) ⊂ A. Then we say that the multiple SLE/GFF coupling is

established.
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The following is the main result in this section [32, 33, 34].

Theorem 3.31 Assume

χ =
2√
κ
−

√
κ

2
. (3.67)

Then, if and only if the driving process of multiple SLE (Y (t))t≥0 is given by the solution of the
SDEs

dYi(t) =
√
κdBi(t) + 4

∑

1≤j≤N,
j 6=i

1

Yi(t) − Yj(t)
dt, t ≥ 0, i = 1, . . . , N, (3.68)

the multiple SLE/GFF coupling is established. In other words, under (3.67), the driving process
of multiple SLE is uniquely determined to be the Dyson model with

β =
8

κ
, (3.69)

DYS8/κ, if the multiple SLE/GFF coupling holds.

Proof. Assume that (ht)t≥0 given by (3.58) satisfies the assumption (A) in Proposition 3.29. Then
by Propositions 3.26 and 3.29, the present theorem will be proved if we can derive DYS8/κ as
(Y (t))t≥0 under the conditions. Owing to the implicit function theorem, we can say that each
Yi(t), t ≥ 0, i = 1, . . . , N is a C∞ function of a continuous local martingale ht(zj), multiple SLE
gt(zj) solving (3.22), and log g′t(zj), j = 1, . . . , N , which satisfy

d

dt
log g′t(z) = −

N∑

i=1

2

(gt(z) − Yi(t))2
, z ∈ H

η
t , t ≥ 0.

Then by Itô’s formula they are semi-martingales and given in the forms,

Yi(t) = Mi(t) + Fi(Yt), t ≥ 0, i = 1, . . . , N, (3.70)

where Mi, i = 1, . . . , N denote the local martingale parts and Fi, i = 1, . . . , N do the finite-variation
parts. Using these representations, as already seen in Section 3.3.3, Itô’s formula gives

dht(z) = Im

N∑

i=1

1

(gt(z) − Yi(t))2

{(
− 4√

κ
+ 2χ

)
dt+

1√
κ
d〈Mi(·),Mi(·)〉t

}

+
2√
κ

Im
1

gt(z) − Yi(t)


dFi(Y (t)) −

∑

1≤j≤N,
j 6=i

4

Yi(t) − Yj(t)
dt




+
2√
κ

Im

N∑

i=1

1

gt(z) − Yi(t)
dMi(t), z ∈ H

η
t , t ≥ 0. (3.71)

By the assumption (A), the first and the second lines in RHS should vanish. The each term in the
first line represents the contribution from the pole of second order at gt(z) = Yi(t), i = 1, . . . , N .
Under (3.67), vanishing of all these contribution implies

d〈Mi(·),Mi(·)〉t = κdt, i = 1, . . . , N.
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The each term in the second line represents the contribution from the pole of first order at gt(z) =
Yi(t), i = 1, . . . , N , and vanishing of all these contribution implies

dFi(Yt) =
∑

1≤j≤N,
j 6=i

4

Yi(t) − Yj(t)
dt, t ≥ 0, i = 1, . . . , N.

Moreover, the quadratic covariations of (ht(·))t≥0 is calculated as

d〈h·(z), h·(w)〉t = −dGg
H
η
t (z, w)

+
4

κ

∑

1≤i,j≤N,
i 6=j

Im

(
1

gt(z) − Yi(t)

)
Im

(
1

gt(w) − Yj(t)

)
d〈Mi(·),Mj(·)〉t,

z, w ∈ H
η
t , t ≥ 0. By the assumption (A),

d〈Mi(·),Mj(·)〉t = 0, t ≥ 0, 1 ≤ i 6= j ≤ N.

Hence the proof is complete.

Remark 3.32 Remember the relation (1.66) in Section 1.5.1,

β = D − 1,

and the relation (3.17) in Section 3.1.2,

κ =
4

D − 1
.

If we simply combine these two relations, we will have

β =
4

κ
.

The relation (3.69) which establishes the multiple SLE/GFF coupling is different from such a
simple-minded result. The multiple SLE driven by DYSβ with the true relation (3.69), β = 8/κ,
inherits many properties from the original SLEκ with a single SLE curve. Actually, we have proved
that our multiple SLEκ also shows phase transitions at κc = 4 and κc = 8 [34].

Theorem 3.33 For each i = 1, . . . , N , the limit ηi(t) = limε↓0 gHη
t
(Yi(t)+

√
−1ε) exists for all t ≥ 0

and limt→∞ ηi(t) = ∞ with probability one. Moreover, the following three phases are observed.

(a) If 0 < κ ≤ κc = 4, ηi(0,∞), i = 1, . . . , N are simple disjoint curves such that ηi ⊂ H, i =
1, . . . , N with probability one.

(b) If κc = 4 < κ < κc = 8, ηi, i = 1, . . . , N are continuous curves with probability one, and they
intersect themselves and R with positive probability.

(c) If κ = 8, ηi, i = 1, . . . , N are space filling continuous curves with probability one.
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3.4 Exercises 3

3.4.1 Exercise 3.1

Let α ∈ (0, 1) and

κ = κ(α) =
4(1 − 2α)2

α(1 − α)
. (3.72)

Then consider the case such that

V (t) =

{√
κt, if α ≤ 1/2,

−
√
κt, if α > 1/2.

(3.73)

(1) Show that the inverse of gt is solved as

g−1
H

η
t
(z) =

(
z + 2

√
α

1 − α

√
t

)1−α
(
z − 2

√
1 − α

α

√
t

)α

, z ∈ H. (3.74)

(2) Derive that the following formula for the slit,

η(t) = g−1
H

η
t
(V (t)) = 2

(
1 − α

α

)1/2−α

e
√
−1απt1/2, t ≥ 0. (3.75)

The slit grows from the origin along a straight line in H which makes an angle απ with respect to
the positive direction of the real axis. When α = 1/2, this is reduced to Example 3.2.

3.4.2 Exercise 3.2

Assume that D,D′ ( C are simply connected domains and let

ϕ : D′ → D conformal map. (3.76)

(1) We write the conformal map ϕ using the real functions (harmonic functions) u, v as

ϕ(z) = u(x, y) +
√
−1v(x, y). (3.77)

Using the Cauchy–Riemann equations,

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
, (3.78)

show that the Jacobian of ϕ is given by

∂(u, v)

∂(x, y)
=
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
=

(
∂u

∂x

)2

+

(
∂u

∂y

)2

(3.79)

(2) Assume that f, g ∈ C∞
c (D) Using the chain rule of differentials and the Cauchy–Riemann

equations (3.78), show the equality,

(∇f ◦ ϕ)(z) · (∇g ◦ ϕ)(z) =

(
∂f

∂u

∂g

∂u
+
∂f

∂v

∂g

∂v

){(
∂u

∂x

)2

+

(
∂u

∂y

)2
}
. (3.80)

(3) Prove the equality,
∫

D
(∇f)(z) · (∇g)(z)µ(dz) =

∫

D′

(∇(f ◦ ϕ))(z) · (∇(g ◦ ϕ))(z)µ(dz) (3.81)

for f, g ∈ C∞
c (D).
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3.4.3 Exercise 3.3

Assume that
EGFF[e

√
−1θ〈H,f〉∇ ] = e−θ2‖f‖2∇/2, θ ∈ R, f ∈W (D). (3.82)

(1) From (3.82), derive the following equalities,

Var[〈H, f〉∇] := EGFF
[
〈H, f〉2∇

]
= ‖f‖2∇, f ∈W (D), (3.83)

Cov[〈H, f〉∇, 〈H, g〉∇] := EGFF
[
〈H, f〉∇〈H, g〉∇

]
= 〈f, g〉∇, f, g ∈W (D). (3.84)

(2) Let ϕ : D′ → D be a conformal map, and denote its pull-back as

ϕ∗ : W (D) ∋ f 7→ f ◦ ϕ ∈W (D′). (3.85)

Then the equality
∫

D
(∇f)(z) · (∇g)(z)µ(dz) =

∫

D′

(∇(f ◦ ϕ))(z) · (∇(g ◦ ϕ))(z)µ(dz) (3.86)

in Lemma 3.19 is simply written as

〈ϕ∗f, ϕ∗g〉∇ = 〈f, g〉∇. (3.87)

Prove the conformal invariance of GFF,

Cov[〈ϕ∗H, f〉∇, 〈ϕ∗H, g〉∇] = Cov[〈H, f〉∇, 〈H, g〉∇]. (3.88)
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