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Abstract Yor’s generalized meander is a temporally inhomogeneous modifi-
cation of the 2(ν + 1)-dimensional Bessel process with ν > −1, in which the
inhomogeneity is indexed by κ ∈ [0, 2(ν + 1)). We introduce the noncolliding
particle systems of the generalized meanders and prove that they are Pfaffi-
an processes, in the sense that any multitime correlation function is given by
a Pfaffian. In the infinite particle limit, we show that the elements of matrix
kernels of the obtained infinite Pfaffian processes are generally expressed by
the Riemann–Liouville differintegrals of functions comprising the Bessel func-
tions Jν used in the fractional calculus, where orders of differintegration are
determined by ν − κ . As special cases of the two parameters (ν, κ), the present
infinite systems include the quaternion determinantal processes studied by For-
rester, Nagao and Honner and by Nagao, which exhibit the temporal transitions
between the universality classes of random matrix theory.

Keywords Noncolliding generalized meanders · Bessel processes · Random
matrix theory · Fredholm Pfaffian and determinant · Riemann–Liouville
differintegrals

Mathematics Subject Classification (2000) 60J60 · 15A52 · 26A33 · 60G55

M. Katori (B)
Department of Physics, Faculty of Science and Engineering, Chuo University,
Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
e-mail: katori@phys.chuo-u.ac.jp

H. Tanemura
Department of Mathematics and Informatics, Faculty of Science, Chiba University,
1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
e-mail: tanemura@math.s.chiba-u.ac.jp



114 M. Katori, H. Tanemura

1 Introduction

The random matrix (RM) theory was introduced originally as an approximation
theory of statistics of nuclear energy levels [30]. It should be noted that at the
same time as the standard theory was established for three ensembles called the
Gaussian unitary, orthogonal, and symplectic ensembles (GUE, GOE, GSE)
[11], Dyson proposed to study stochastic processes of interacting particles such
that the eigenvalue statistics of RMs are realized in distribution of particle posi-
tions on R [10]. Dyson’s Brownian motion model is a one-parameter family of
N-particle systems, Z(β)(t) = (Z(β)

1 (t), . . . , Z(β)

N (t)), described by the stochastic
differential equations

dZ(β)
i (t) = dBi(t) + β

2

∑

1≤j≤N,j �=i

1

Z(β)
i (t) − Z(β)

j (t)
dt,

t ∈ [0, ∞), 1 ≤ i ≤ N, (1)

where Bi(t), i = 1, 2, . . . , N are independent standard Brownian motions and
the parameter β equals 2, 1, and 4 for GUE, GOE, and GSE, respectively. Due
to the strong repulsive forces, which are long-ranged and act between any pair
of particles, intersections of particle trajectories are prohibited for β ≥ 1 [43]
(see also [7]). In this one-parameter family, the β = 2 case (i.e. the GUE case) is
the simplest and the most understood, since its equivalence with the N particle
systems of Brownian motions conditioned never to collide with each other can
be proved [16].

The standard (Wigner–Dyson) theory has been extended by adding three
chiral versions of RM ensembles in the particle physics of QCD [19,46,51,52],
and by introducing the four additional ensembles so-called the Bogoliubov–de
Gennes classes in the mesoscopic physics [1,2]. Here we note that the chiral
ensembles have a parameter ν ∈ {0, 1, 2, . . . } in addition to β. In these totally ten
ensembles [1,2,54], chiral GUE (chGUE), class C and class D can be regarded
as natural extensions of the GUE, in the sense that these eigenvalue statis-
tics are also realized in appropriate noncolliding systems of stochastic particle
systems: König and O’Connell showed that the chGUE with the parameter
ν ∈ {0, 1, 2, . . . } corresponds to the noncolliding systems of 2(ν + 1)-dimen-
sional squared Bessel processes [28]. The present authors clarified that the
eigenvalue statistics in the classes C and D are realized by the noncolliding
systems of the Brownian motions with an absorbing wall at the origin and of
the Brownian motions reflecting at the origin [26,27]. Since the absorbing and
reflecting Brownian motions are directly related with the three-dimensional
and one-dimensional Bessel processes, respectively (see, for example [41]),
the stochastic differential equations of these noncolliding particle systems are
generally given by
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dZ̃(ν)
i (t) = dBi(t) +

∑

1≤j≤N,j �=i





1

Z̃(ν)
i (t) − Z̃(ν)

j (t)
+ 1

Z̃(ν)
i (t) + Z̃(ν)

j (t)




dt

+2ν + 1
2

1

Z̃(ν)
i (t)

dt, t ∈ [0, ∞), 1 ≤ i ≤ N, (2)

with reflecting barrier condition at the origin in case ν = −1/2. Therefore, the
difference of (nonstandard) RM ensembles can be attributed to the difference
of dimensionality of the Bessel processes, whose noncolliding sets realize the
statistics of the RM ensembles [26]. Here we remind that the d-dimensional
Bessel process is defined as the process of the radial coordinate (the modulus)
of a Brownian motion in R

d. To realize other 10 − 4 = 6 RM ensembles by
conditioned stochastic processes may be much more difficult (see [49]), but we
demonstrated that, if we consider appropriate noncolliding systems of tempo-
rally inhomogeneous processes defined only in a finite time-interval [0, T], we
can observe the transitions of distributions into the six distributions as the time
t approaches the final time T [25,26]. The interesting fact is that the processes
that can be used instead of the Bessel processes (2) should have one more
parameter κ in addition to ν. This two-parameter family of temporally inhomo-
geneous processes indexed by (ν, κ), ν > −1, κ ∈ [0, 2(ν + 1)) is equivalent with
the family of processes already studied by Yor. He called them the generalized
meanders [53].

From the viewpoint of RM theory, studying time-development of stochas-
tic systems by calculating, for example, the multitime correlation functions
corresponds to considering multimatrix models. In particular, the temporally
inhomogeneous processes will be identified with such matrix models that matri-
ces with different symmetries are coupled in a chain [22–24,34]. Determination
of all multitime correlation functions of systems, which allows us to determine
scaling limits associated with the infinity limit of matrix sizes (i.e. the infinite-
particle limit) is one of the main topics of the modern theory of RM [30]. The
finite and infinite particle systems showing the orthogonal–unitary and symplec-
tic–unitary transitions, and transitions between class C to class CI were stud-
ied and multitime correlation functions were determined by Forrester, Nagao
and Honner (FNH) [15], and by Nagao [32], respectively. The system in the
Laguerre ensemble with β = 1 initial condition reported in the former paper
can be regarded as the ν = κ ∈ {0, 1, 2, . . . } case of the noncolliding system of
the generalized meanders and the system reported in the latter paper as the
(ν, κ) = (1/2, 1) case.

If we think about the system of generalized meanders apart from the RM
theory, however, we can consider the parameters ν and κ as real numbers,
and not necessarily integers nor half-integers. In the present paper, we calcu-
late the multitime correlation functions of noncolliding systems of (squared)
generalized meanders for arbitrary values of parameters, provided they
satisfy the condition ν > −1, κ ∈ [0, 2(ν + 1)) so that the systems do not
collapse. We first define the N particle systems in a finite time-interval [0, T]
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and take the N = T → ∞ limit to construct the two-parameter family of
infinite particle systems. We prove that the multitime characteristic function is
given by a Fredholm Pfaffian [40] and thus any multitime correlation function
is given by a Pfaffian. Similarly to the results by FNH [15] and Nagao [32]
and their temporally-homogeneous version (the determinantal process with
the extended Bessel kernel [50]), the elements of the matrix kernels of Pfaffi-
ans are expressed using the Bessel functions, but we clarify the fact that they
are generally given by the Riemann–Liouville differintegrals of the functions
comprising the Bessel functions, which are used in fractional calculus (see, for
example, [36,38,44]). This structure will explain the origin of the multiple inte-
gral expressions for the elements of the matrix kernels reported by FNH [15]
and Nagao [32].

The paper is organized as follows. In Sect. 2, the definitions of the generalized
meanders of Yor and their noncolliding systems are given and the Riemann–
Liouville differintegrals of the Bessel functions with appropriate factors are
introduced. The main theorem for the infinite particle limit (Theorem 2.1) is
then given. It is demonstrated that, if we take a further limit in the system
of Theorem 2.1, we will obtain the temporally homogeneous system of infi-
nite number of particles, which is a determinantal process with the extended
Bessel kernel studied in [50] (see also [37]). Using the properties of the
Riemann–Liouville differintegrals, we show that Theorem 2.1 includes the
results by FNH [15] and Nagao [32] as special cases. Section 3 is devoted to
prove that for any finite number of particles N, the present system is a Pfaffian
process (Theorem 3.1), in the sense that any multitime correlation function is
given by a Pfaffian [40]. These Pfaffian processes may be regarded as the con-
tinuous space–time version of the Pfaffian point processes and Pfaffian Schur
processes studied by Borodin and Rains [4]. Soshnikov used the term Pfaffian
ensembles in [6,47,48]. See also [13,17,20,39,45] in the context of study of
nonequilibrium phenomena in the polynuclear growth models, and [14,35] in
that of shape fluctuations of crystal facets. The processes studied in [15,32]
are also Pfaffian processes, since the ‘quaternion determinantal expressions’ of
correlation functions, introduced and developed by Dyson, Mehta, Forrester,
and Nagao [12,29–31,33], are readily transformed to Pfaffian expressions. The
method of skew-orthogonal functions associated with the Laguerre polynomi-
als is used in Sect. 4 in order to perform matrix inversion and give explicit
expressions for the elements of matrix kernels of Pfaffians. Asymptotics in
T = N → ∞ are studied in Sect. 5. Appendices are given to show proofs of
formulae and lemmas used in the text.

At the end of this introduction, we would like to refer to the papers [8,
18], which reported the further extensions of RM theory in physics and the
representation theory. We hope that the present paper will demonstrate the
fruitfulness of developing the probability theory of interacting infinite particle
systems in connection with the extensive study of (multi-)matrix models in the
RM theory.
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2 Definition of processes and results

2.1 Noncolliding systems of generalized meanders

Let Z and R be the sets of integers and real numbers, respectively, and set
N = {1, 2, . . . }, N0 = N ∪ {0}, Z− = Z \ N0, and R+ = {x ∈ R : x ≥ 0}. Let
�(c), c ∈ R \ (Z− ∪ {0}), be the Gamma function: �(c) = ∫∞

0 dy e−yyc−1 for
c > 0, and �(c) = �(c + [−c] + 1)/{c(c + 1) · · · (c + [−c])} for c ∈ (−∞, 0) \ Z−,
where [c] is the largest integer that is less than or equal to the real number c. For
t > 0, x, y ∈ R+ and ν > −1 we denote by G(ν)

t (t; y|x) the transition probability
density of a 2(ν + 1)-dimensional Bessel process [5,41],

G(ν)(t; y|x) = yν+1

xν

1
t

e−(x2+y2)/2tIν

(xy
t

)
, x > 0, y ∈ R+,

G(ν)(t; y|0) = y2ν+1

2ν�(ν + 1)tν+1
e−y2/2t, y ∈ R+,

where Iν(z) is the modified Bessel function : Iν(z) = ∑∞
n=0(z/2)2n+ν/{�(n +

1)�(ν + n + 1)}. For T > 0, κ ∈ [0, 2(ν + 1)), we put

h(ν,κ)
T (t, x) =

∞∫

0

dy G(ν)(T − t; y|x)y−κ , x ∈ R+, t ∈ [0, T],

and

G(ν,κ)
T (s, x; t, y) = 1

h(ν,κ)
T (s, x)

G(ν)(t − s; y|x)h(ν,κ)
T (t, y), (3)

G(ν,κ)
T (0, 0; t, y) = �(ν + 1)

�(ν + 1 − κ/2)
(2T)κ/2G(ν)(t; y|0)h(ν,κ)

T (t, y), (4)

for x > 0, y ∈ R+, 0 ≤ s ≤ t ≤ T. This transition probability density
G(ν,κ)

T (s, x; t, y) defines the temporally inhomogeneous process in a finite time-
interval [0, T], which is called a generalized meander. In particular, when ν = 1/2
and κ = 1, it is identified with the process called a Brownian meander (see
Chap. 3 in [53]).

Now we consider the N-particle system of generalized meanders conditioned
that they never collide in a finite time-interval [0, T]. Let

R
N+< =

{
x = (x1, x2, . . . , xN) ∈ R

N+ : 0 ≤ x1 < x2 < · · · < xN

}
.
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According to the determinantal formula of Karlin and McGregor [21], the
transition probability density is given as

g(ν,κ)
N,T (s, x; t, y) = f (ν,κ)

N,T (s, x; t, y)N (ν,κ)
N,T (T − t, y)

N (ν,κ)
N,T (T − s, x)

, x, y ∈ R
N+<, (5)

for 0 ≤ s ≤ t ≤ T, where f (ν,κ)
N,T (s, x; t, y) = det

1≤j,k≤N

[
G(ν,κ)

T (s, xj, t, yk)
]

and

N (ν,κ)
N,T (t, x) =

∫

R
N+<

dyf (ν,κ)
N,T (T − t, x; T, y).

Since h(ν,0)
T (t, x) = 1, G(ν,0)

T (s, x; t, y) = G(ν)(t − s; y|x) and thus f (ν,0)
N,T is tem-

porally homogeneous and independent of T, we will write f (ν)
N (t − s; y|x) for

f (ν,0)
N,T (s, x; t, y). Moreover, note that

f (ν,κ)
N,T (s, x; t, y) = 1

h(ν,κ)
T (s, x)

f (ν)
N (t − s; y|x)h(ν,κ)

T (t, y),

where h(ν,κ)
T (t, x) ≡ ∏N

j=1 h(ν,κ)
T (t, xj) and h(ν,κ)

T (T, x) = ∏N
j=1 x−κ

j . Then Eq. (5)
can be written as

g(ν,κ)
N,T (s, x; t, y) = 1

Ñ (ν,κ)
N (T − s, x)

f (ν)
N (t − s; y|x)Ñ (ν,κ)

N (T − t, y), (6)

where

Ñ (ν,κ)
N (t, x) =

∫

R
N+<

dy f (ν)
N (t; y|x)

N∏

j=1

y−κ
j . (7)

In our previous paper [26] it was shown that, taking the limit x → 0 ≡
(0, 0, . . . , 0) at the initial time s = 0, Eq. (6) becomes

g(ν,κ)
N,T (0, 0; t, y) = Cν,κ

N,T(t)
N∏

j=1

G(ν)(t, yj|0)
∏

1≤j<k≤N

(y2
k − y2

j ) Ñ (ν,κ)
N (T − t, y),

(8)

for ν > −1 and κ ∈ [0, 2(ν + 1)), where

Cν,κ
N,T(t) = T(N+κ−1)N/2t−(N−1)N

2N(N−κ−1)/2

N∏

j=1

�(ν + 1)�(1/2)

� (j/2) � ((j + 1 + 2ν − κ)/2)
.
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The N-particle system of noncolliding generalized meanders all starting from
the origin 0 at time 0 is defined by the transition probability density g(ν,κ)

N,T given
above and it will be denoted by X(t), t ∈ [0, T] in the present paper. It makes a
two-parameter family of temporally inhomogeneous processes parameterized
by ν > −1 and κ ∈ [0, 2(ν + 1)).

We denote by X the space of countable subsets ξ of R satisfying �(ξ∩K)<∞
for any compact subset K. For x = (x1, x2, . . . , xn) ∈ ⋃∞

�=1 R
�, we denote

{xi}n
i=1 ∈ X simply by {x}. Then �X

N(t) = {X(t)}, t ∈ [0, T], is the diffusion process

on the set X with transition density function g
(ν,κ)
N,T (s, ξ ; t, η), 0 ≤ s ≤ t ≤ T:

g
(ν,κ)
N,T (s, ξ ; t, η) =






g(ν,κ)
N,T (s, x; t, y), if s > 0, �ξ = �η = N,

g(ν,κ)
N,T (0, 0; t, y), if s = 0, ξ = {0}, �η = N,

0, otherwise,

where x and y are the elements of R
N+< with ξ = {x}, η = {y}.

For the given time interval [0, T], we consider the M intermediate times
0 < t1 < t2 < · · · < tM < T. For convenience, we set t0 = 0, tM+1 = T. For x(m) ∈
R

N , 1 ≤ m ≤ M + 1, and N′ = 1, 2, . . . , N, we put x(m)

N′ =
(

x(m)

1 , x(m)
2 , . . . , x(m)

N′
)

and ξN′
m = {x(m)

N′ }. Then the multitime transition density function of the process
�X

N(t) is given by

g
(ν,κ)
N,T

(
0, {0}; t1, ξN

1 ; . . . ; tM+1, ξN
M+1

)
=

M∏

m=0

g
(ν,κ)
N,T

(
tm, ξN

m ; tm+1, ξN
m+1

)
, (9)

where we assume ξN
0 = {0}. For a sequence {Nm}M+1

m=1 of positive integers less
than or equal to N, we define the (N1, N2, . . . , NM+1)-multitime correlation
function by

ρX
N,T

(
t1, ξN1

1 ; t2, ξN2
2 ; . . . ; tM+1, ξNM+1

M+1

)
=

M+1∏

m=1

1
(N − Nm)!

×
∫

∏M+1
m=1 R

N−Nm+

M+1∏

m=1

N∏

j=Nm+1

dx(m)
j g

(ν,κ)
N,T

(
0, {0}; t1, ξN

1 ; . . . ; tM+1, ξN
M+1

)
. (10)

Associated with the generalized meander (3) and (4), we consider a temporally
inhomogeneous diffusion process with transition probability density

p(ν,κ)
T (0, 0; t, y) ≡ G(ν,κ)

T (0, 0; t,
√

y)
1
2

y−1/2, y ∈ R+,

p(ν,κ)
T (s, x; t, y) ≡ G(ν,κ)

T (s,
√

x : t,
√

y)
1
2

y−1/2, x > 0, y ∈ R+,
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0 ≤ s < t ≤ T, and call it a squared generalized meander. The N-particle system
of noncolliding squared generalized meanders Y(t), t ∈ [0, T], is then defined by

Y(t) =
(

X1(t)
2, X2(t)2, . . . , XN(t)2

)
, t ∈ [0, T].

The correlation function ρY
N,T of �Y

N(t) = {Y(t)} is obtained from Eq. (10)
through the relation

ρY
N,T

(
t1, ζN1

1 ; t2, ζN2
2 ; . . . ; tM+1, ζNM+1

M+1

)

= ρX
N,T

(
t1, ξN1

1 ; t2, ξN2
2 ; . . . ; tM+1, ξNM+1

M+1

)M+1∏

m=1

Nm∏

j=1

1

2x(m)
j

, (11)

where ξ
Nm
m = {x(m)

Nm
}, ζNm

m = {y(m)
Nm

} with x(m)
j =

√
y(m)

j , 1 ≤ j ≤ Nm, 1 ≤ m ≤
M + 1.

2.2 Riemann–Liouville differintegrals of Bessel functions

We consider the following left and right Riemann–Liouville differintegrals for
integrable functions f on R+,

0Dc
xf (x) = 1

�(n − c)

(
d

dx

)n x∫

0

(x − y)n−c−1f (y)dy, (12)

xDc∞f (x) = 1
�(n − c)

(
− d

dx

)n ∞∫

x

(y − x)n−c−1f (y)dy, (13)

where c ∈ R and n = [c + 1]+ with the notation x+ = max{x, 0}. It is easy
to confirm that, if c ∈ N0, both of them are reduced to the ordinary multiple
derivative,

0Dc
xf (x) = (−1)c

xDc∞f (x) =
(

d
dx

)c

f (x),

and, if c ∈ Z−, they are equal to the multiple integrals,

0Dc
xf (x) =

x∫

0

dy|c|−1

y|c|−1∫

0

dy|c|−2 · · ·
y2∫

0

dy1

y1∫

0

dy0f (y0),

xDc∞f (x) =
∞∫

x

dy|c|−1

∞∫

y|c|−1

dy|c|−2 · · ·
∞∫

y2

dy1

∞∫

y1

dy0f (y0).
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For c ∈ (−∞, 0) \ Z− Eqs. (12) and (13) define fractional integrals, and for
c ∈ R+ \ N0 fractional differentials. The Riemann–Liouville differintegrals are
most often used in the fractional calculus (see, for example, [36,38,44]).

Let Jν(z) be the Bessel functions: Jν(z) = ∑∞
�=0(−1)�(z/2)2�+ν/{�(ν + � +

1)�!}. We define functions J̃ν and Ĵν as

J̃ν(θ , η, x, s) = (θηx)ν/2Jν(2
√

θηx)e2sθη, (14)

Ĵν(θ , η, x, s) = (θηx)−ν/2Jν(2
√

θηx)e2sθη. (15)

We will use the following abbreviations for the Riemann–Liouville differinte-
grals of order c ∈ R of J̃ν and Ĵν ,

J̃(c)
ν (θ , η, x, s) = 0Dc

η̃Jν(θ , η, x, s), θ , η > 0, s ∈ R, (16)

Ĵ(c)
ν (θ , η, x, s) = ηDc∞Ĵν(θ , η, x, s), θ , η > 0, s < 0. (17)

We note that, if c ∈ R \ N0, J̃(c)
ν can be expanded as

J̃(c)
ν (θ , η, x, s) = 1

�(−c)

∞∑

n=0

(−1)nηn−c

n!(n − c)
J̃(n)
ν (θ , η, x, s), (18)

for θ , η > 0, s ∈ R. It is also noted that, since Ĵν(θ , η, x, s) → 0 exponentially
fast as η → ∞, if sθ < 0,

Ĵ(c)
ν (θ , η, x, s) = 1

�(n − c)

∞∫

η

dξ (ξ − η)n−c−1̂J(n)
ν (θ , ξ , x, s), (19)

for θ , η > 0, s < 0, where n = [c + 1]+.

2.3 Results

We put

a = a(ν, κ) = ν − κ

2
, b = b(ν, κ) = ν − κ , (20)
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and introduce functions D(s, x; t, y), Ĩ(s, x; t, y), S(s, x; t, y), and S̃(s, x; t, y), x, y ∈
R+, s, t < 0,

D(s, x; t, y) = 1
4(xy)κ/2

1∫

0

dθ θ1−κ
[
J̃(−b)
ν (θ , 1, x, −s)̃J(−b−1)

ν (θ , 1, y, −t)

−̃J(−b−1)
ν (θ , 1, x, −s)̃J(−b)

ν (θ , 1, y, −t)
]
,

Ĩ(s, x; t, y) = (xy)κ/2

∞∫

1

dθ θκ−1
[
Ĵ(b+1)
ν (θ , 1, x, s)

∞∫

1

dξ ξ âJ(b+1)
ν (θ , ξ , y, t)

−̂J(b+1)
ν (θ , 1, y, t)

∞∫

1

dξ ξ âJ(b+1)
ν (θ , ξ , x, s)

]
,

S(s, x; t, y) = 1
2

(
x
y

)κ/2 1∫

0

dθ
[
Ĵ(b+1)
ν (θ , 1, x, s)̃J(−b−1)

ν (θ , 1, y, −t)

−{
ãJ(−b−1)

ν (θ , 1, y, −t) − J̃(−b)
ν (θ , 1, y, −t)

}

×
∞∫

1

dξ ξ âJ(b+1)
ν (θ , ξ , x, s)

]
, (21)

and

S̃(s, x; t, y) = S(s, x; t, y) − 1(s<t)

(y
x

)b/2
G(s, x; t, y), (22)

where 1(ω) is the indicator function: 1(ω) = 1 if ω is satisfied and 1(ω) = 0
otherwise, and

G(s, x; t, y) =
∞∫

0

dθ Jν(2
√

θx)Jν(2
√

θy)e2(s−t)θ . (23)

For an integer N and a skew-symmetric 2N × 2N matrix A = (aij), the Pfaffian
is defined as

Pf(A) = Pf1≤i<j≤2N(aij) = 1
N!

∑

σ

sgn(σ )aσ(1)σ (2)aσ(3)σ (4) · · · aσ(2N−1)σ (2N),

(24)
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where the summation is extended over all permutations σ of (1, 2, . . . , 2N) with
restriction σ(2k − 1) < σ(2k), k = 1, 2, . . . , N. We put

�̂Y
N(s) = {Y1(TN + s), Y2(TN + s), . . . , YN(TN + s)}, s ∈ [−TN , 0),

and �̂Y
N(s) = {0}, s ∈ (−∞, −TN). Then we can state the main theorem in the

present paper.

Theorem 2.1. Let TN = N. Then the process �̂Y
N(s), s ∈ (−∞, 0) converges to

the process �̂Y∞(s), s ∈ (−∞, 0), as N → ∞, in the sense of finite dimensional
distributions, whose correlation functions ρY are given by

ρY
(

s1, {y(1)
N1

}; s2, {y(2)
N2

}; . . . ; sM, {y(M)
NM

}
)

= Pf
[
A
(

y(1)
N1

, y(2)
N2

, . . . , y(M)
NM

)]
,

for any M ≥ 1, any sequence {Nm}M
m=1 of positive integers, and any strictly

increasing sequence {sm}M+1
m=1 of nonpositive numbers with sM+1 = 0, where

A
(

y(1)
N1

, y(2)
N2

, . . . , y(M)
NM

)
is the 2

∑M
m=1 Nm × 2

∑M
m=1 Nm skew-symmetric matrix

defined by

A
(

y(1)
N1

, y(2)
N2

, . . . , y(M)
NM

)
=
(
Am,n(y(m)

i , y(n)
j )

)

1≤i≤Nm,1≤j≤Nn,1≤m,n≤M

with 2 × 2 matrices Am,n(x, y) ;

Am,n(x, y) =
( D(sm, x; sn, y) S̃(sn, y; sm, x)

−S̃(sm, x; sn, y) −Ĩ(sm, x; sn, y)

)
.

In the infinite-particle system defined by Theorem 2.1, we can take the further
limit:

sm → −∞ with the time differences sn − sm fixed, 1 ≤ m, n ≤ M.

In this limit, D(sm, x; sn, y)Ĩ(sm, x; sn, y) → 0, 1 ≤ m, n ≤ M, as we show in
Appendix C.. Therefore, we can replace D and Ĩ by zeros in the matrices. Then
the Pfaffian is reduced to an ordinary determinant of the

∑M+1
m=1 Nm×∑M+1

m=1 Nm
matrix,

A

(
y(1)

N1
, y(2)

N2
, . . . , y(M)

NM

)
=
(

am,n(y(m)
i , y(n)

j )
)

1≤i≤Nm,1≤j≤Nn,1≤m,n≤M
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with the elements am,n
(

y(m)
i , y(n)

j

)
= S̃

(
sm, y(m)

i ; sn, y(n)
j

)
, where

S̃(s, x; t, y) =






1∫

0

dθ Jν(2
√

θx)Jν(2
√

θy)e2(s−t)θ , if s > t,

Jν(2
√

x)
√

yJ′
ν(2

√
y) − Jν(2

√
y)

√
xJ′

ν(2
√

x)

x − y
, if s = t,

−
∞∫

1

dθ Jν(2
√

θx)Jν(2
√

θy)e2(s−t)θ , if s < t,

with J′
ν(z) = dJν(z)/dz. Hence, in this limit we obtain a temporally homo-

geneous system of infinite number of particles, whose correlation functions are
given by

ρ̃Y
(

s1, {y(1)
N1

}; . . . ; sM, {y(M)
NM

}
)

= det A

(
y(1)

N1
, . . . , y(M)

NM

)
. (25)

Remark 1. Forrester et al. [15] studied the orthogonal–unitary and symplectic–
unitary universality transitions in RM theory by giving the quaternion deter-
minantal expressions of (two-time) correlation functions for parametric RM
models. One of their results for the Laguerre ensemble with β = 1 initial con-
dition, which shows the orthogonal–unitary transition, can be reproduced from
Theorem 2.1 by setting

(i) κ = ν ⇐⇒ a = ν

2
, b = 0, where ν ∈ N0.

This fact may be readily seen, if we notice that by definition

J̃(−1)
ν (θ , 1, x, s) =

1∫

0

dη (θηx)ν/2Jν(2
√

θηx)e2sθη

= θ−1xν/2

θ∫

0

du uν/2Jν(2
√

ux)e2su.

Remark 2. Nagao’s result on the multitime correlation functions for vicious
random walk with a wall [32] can be regarded as the special case of Theorem
2.1, in which

(ii) ν = 1
2

, κ = 1 ⇐⇒ a = 0, b = −1
2

.
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This fact can be confirmed by noting that, by definition (16) with J̃1/2(θ , 0; x, s) =
0,

J̃(−1/2)

1/2 (θ , 1, x, s) = (θx)1/4
√

π

1∫

0

dη (1 − η)−1/2η1/4J1/2(2
√

θηx)e2sθη,

J̃(1/2)

1/2 (θ , 1, x, s) = (θx)1/4
√

π

1∫

0

dη (1 − η)−1/2 d
dη

{
η1/4J1/2(2

√
θηx)e2sθη

}
,

by Eq. (19),

Ĵ(1/2)

1/2 (θ , η, x, s) = − (θx)−1/4
√

π

∞∫

η

dξ (ξ − η)−1/2 d
dξ

{
ξ−1/4J1/2(2

√
θξx)e2sθξ

}
,

for s < 0 and, by definition (17),

∞∫

1

dξ Ĵ(1/2)

1/2 (θ , ξ , x, s) = (θx)−1/4
√

π

∞∫

1

dη (η − 1)−1/2η−1/4J1/2(2
√

θηx)e2sθη,

for s < 0. In this case, the system shows the transition between the class C and
class CI of the Bogoliubov–de Gennes universality classes of nonstandard RM
theory [26,27,32].

Remark 3. From the results for finite noncolliding processes [26], we expect
that, when

(iii) κ = ν + 1 ⇐⇒ a = ν − 1
2

, b = −1, where ν ∈ N0,

the present infinite particle system will show the transition from the chiral GUE
to the chiral GOE of the universality classes and when

(iv) ν = −1
2

, κ = 0 ⇐⇒ a = b = −1
2

,

that from the class D to the ‘real-component version’ of class D of the
Bogoliubov–de Gennes universality classes [26].

Remark 4. Following the argument given in [20,39], tightness in time can be
proved and transition phenomena observed in the limit sM → 0 may be gener-
ally discussed, which will be reported elsewhere.

Remark 5. The homogeneous system (25) was studied in [37,50].
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3 Correlation functions given by Pfaffians

3.1 The multitime transition density

If we put

G̃(ν,κ)(t, y|x) = G(ν)(t, y|x)
(y

x

)−κ

, x > 0, y ∈ R+,

G̃(ν,κ)(t, y|0) = G(ν)(t, y|0)y−κ , y ∈ R+,

the multitime transition densition (9) with t0 = 0, tM+1 = T, and ξ0 = {0} is
written as

g
(ν,κ)
N,T

(
0, {0}; t1,

{
x(1)

N

}
; . . . ; tM+1,

{
x(M+1)

N

} )

= Cν,κ
N,T(t1)

∏

1≤j<k≤N

{(
x(1)

k

)2 −
(

x(1)
j

)2
} ∏

1≤j<k≤N

sgn
(

x(M+1)

k − x(M+1)
j

)

×
N∏

j=1

G̃(ν,κ)
(

t1, x(1)
j |0

) M∏

m=1

det
1≤j,k≤N

[
G̃(ν,κ)

(
tm+1 − tm, x(m+1)

j |x(m)

k

) ]
,

where Eqs. (6) and (8) with Eq. (7) are used.
Through the relation (11), the multitime transition density for the process

{Y(t)}, t ∈ [0, T], denoted by p
(ν,κ)
N,T is then written as

p
(ν,κ)
N,T

(
0, {0}; t1,

{
y(1)

}
; . . . ; tM+1,

{
y(M+1)

} )

= Cν,κ
N,T(t1)hN(y(1))sgn

(
hN(y(M+1))

) N∏

k=1

p̃(ν,κ)(t1, y(1)

k |0)

×
M∏

m=1

det
1≤j,k≤N

[
p̃(ν,κ)(tm+1 − tm, y(m+1)

j |y(m)

k )

]
, (26)

where

hN(y) ≡
∏

1≤i<j≤N

(yj − yi), y ∈ R
N ,

p̃(ν,κ)(t, y|0) ≡ G̃(ν,κ)(t,
√

y|0)
1
2

y−1/2

= ya

2ν+1�(ν + 1)tν+1
e−y/2t, y ∈ R+,
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p̃(ν,κ)(t − s, y|x) ≡ G̃(ν,κ)(t − s,
√

y|√x)
1
2

y−1/2

= e−(x+y)/{2(t−s)}

2(t − s)

(y
x

)b/2
Iν

(√
xy

t − s

)
, x > 0, y ∈ R+.

(27)

Expectations related to the process {Y(t1)}, {Y(t2)}, . . . , {Y(tM+1)} are
denoted by E

Y
N,T :

E
Y
N,T

[
f ({Y(t1)}, . . . , {Y(tM+1)})

]

=
(

1
N!

)M+1 ∫

R
N(M+1)
+

M+1∏

m=1

dy(m) f (
{

y(1)

}
, . . . ,

{
y(M+1)

}
)

×p
(ν,κ)
N,T

(
0, {0}; t1, {y(1)}; . . . ; tM+1, {y(M+1)}

)
. (28)

3.2 Fredholm Pfaffian representation of characteristic function and Pfaffian
process

For simplicity of expressions, we assume from now on that the number of
particles N is even. The references [32,33] will be useful to give necessary mod-
ifications to the following expressions in the case that N is odd. Let C0(R)

be the set of all continuous real functions with compact supports. For f =
(f1, f2, . . . , fM+1) ∈ C0(R)M+1, and θ = (θ1, θ2, . . . , θM+1) ∈ R

M+1, the multitime
characteristic function is defined for the process {Y(t)}, t ∈ [0, T] as

�Y
N,T(f; θ) = E

Y
N,T



exp





√

−1
M+1∑

m=1

θm

N∑

im=1

fm(Yim(tm))








 (29)

Let χm(x) = e
√−1θmfm(x)−1, 1 ≤ m ≤ M+1. Then by the definition of multitime

correlation function (11) with (10), we have

�Y
N,T(f; θ) =

N∑

N1=0

· · ·
N∑

NM+1=0

M+1∏

m=1

1
Nm!

×
∫

R
N1+

dy(1)
N1

· · ·
∫

R
NM+1+

dy(M+1)
NM+1

M+1∏

m=1

Nm∏

i(m)=1

χm

(
y(m)

i(m)

)

×ρY
N,T

(
t1,

{
y(1)

N1

}
; . . . ; tM+1,

{
y(M+1)

NM+1

})
, (30)
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that is, the multitime characteristic function is a generating function of
multitime correlation functions ρY

N,T .

We consider a vector space V with the orthonormal basis
{
|m, x〉

}

1≤m≤M+1,x∈R+
,

which satisfies

〈m, x|n, y〉 = δmnδ(x − y), m, n = 1, 2, . . . , M + 1, x, y ∈ R+, (31)

where δmn and δ(x−y) denote Kronecker’s delta and Dirac’s δ-measure, respec-
tively. We introduce the operators Ĵ, p̂, p̂+, p̂− and χ̂ acting on V as follows

〈m, x|Ĵ|n, y〉 = 1(m=n=M+1)sgn(y − x), (32)

〈m, x|p̂|n, y〉 = 1(m<n)̃p(ν,κ)(tn − tm, y|x) + 1(m>n)p̃(ν,κ)(tm − tn, x|y)

+1(m=n)δ(x − y), (33)

〈m, x|p̂+|n, y〉 = 1(m<n)̃p(ν,κ)(tn − tm, y|x) = 〈n, y|p̂−|m, x〉, (34)

〈m, x|χ̂ |n, y〉 = χm(x)δmnδ(x − y), (35)

and we will use the convention

〈m, x|Â|n, y〉〈n, y|B̂|�, z) =
M+1∑

n=1

∫

R+

dy A(m, x; n, y)B(n, y; �, z)

= 〈m, x|ÂB̂|�, z〉,

for operators Â and B̂ with 〈m, x|Â|n, y〉 = A(m, x; n, y) and 〈m, x|B̂|n, y〉 =
B(m, x; n, y).

Let Mi(x) be an arbitrary polynomial of x with degree i in the form Mi(x) =
bixi + · · · with a constant bi �= 0 for i ∈ N0. Since the product of differences
hN(x) is equal to the Vandermonde determinant, we have

hN(x) =
{

N∏

k=1

bk−1

}−1

det
1≤i,j≤N

[
Mi−1(xj)

]
. (36)

Then we consider the set of linearly independent vectors
{
|i〉 ; i ∈ N

}
in V

defined by

|i〉 = |m, x〉〈m, x|i〉,

where

〈m, x|i〉 = 〈i|m, x〉 =
∫

R+

dyMi−1(y)̃p(ν,κ)(t1, y|0)̃p(ν,κ)(tm − t1, x|y), (37)
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i ∈ N, m = 1, 2, . . . , M + 1, x ∈ R+. We will use the convention

〈i|Â|j〉〈j|B̂|m, x〉 =
∞∑

j=1

AijB
(m)
j (x) = 〈i|Â ◦ B̂|m, x〉,

for Aij = 〈i|Â|j〉 and B(m)
j (x) = 〈j|B̂|m, x〉. It should be noted that the vecors{

|i〉 ; i ∈ N

}
are not assumed to be mutually orthogonal. By these vectors,

however, any operator Â on V may have a semi-infinite matrix representation

A =
(
〈i|Â|j〉

)

i,j∈N
. If the matrix A representing an operator Â is invertible, we

define the operator Â� so that its matrix representation is the inverse of A

(
〈i|Â�|j〉

)

i,j∈N
= A−1, (38)

that is, 〈i|Â|j〉〈j|Â�|k〉 = 〈i|Â ◦ Â�|k〉 = δik, i, k ∈ N.

Let PN be a linear operator projecting Span
{
|i〉 ; i ∈ N

}
to its N-dimensional

subspace Span
{
|i〉 ; i = 1, 2, . . . , N

}
such that

〈i|PN |m, x〉 = 〈m, x|PN |i〉 =





〈i|m, x〉, if 1 ≤ i ≤ N,

0, otherwise.

We will use the abbreviation ÂN = PNÂPN for an operator Â. If the N × N
matrix defined by AN = (〈i|ÂN |j〉)1≤i,j≤N is invertible, then (ÂN)� is defined

so that
(
〈i|(ÂN)�|j〉

)

1≤i,j≤N
= (AN)−1, and 〈i|(ÂN)�|j〉 = 0, if i ≥ N + 1 or

j ≥ N + 1.
As shown in Appendix A., we can prove that

{
�Y

N,T(f; θ)

}2

= Det
(

I2δmnδ(x − y) +
(

S̃m,n(x, y) Ĩm,n(x, y)

Dm,n(x, y) S̃n,m(y, x)

)
χn(y)

)
, (39)

where Det denotes the Fredholm determinant. Here I2 is the unit matrix with
size 2,

Dm,n(x, y) = −〈m, x| ◦ (ĴN)� ◦ |n, y〉,
Sm,n(x, y) = 〈m, x|p̂Ĵ ◦ (ĴN)� ◦ |n, y〉, (40)

Im,n(x, y) = −〈m, x|p̂Ĵ ◦ (ĴN)� ◦ Ĵp̂|n, y〉,

and
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S̃m,n(x, y) = Sm,n(x, y) − 〈m, x|p̂+|n, y〉
Ĩm,n(x, y) = Im,n(x, y) + 〈m, x|p̂Ĵp̂|n, y〉.

(41)

It implies that the multitime characteristic function is given by the Fredholm
Pfaffian [40],

�Y
N,T(f; θ) = PF

(
J2δmnδ(x − y) + √

χm(x)Am,n(x, y)
√

χn(y)
)

, (42)

where J2 =
(

0 1
−1 0

)
and

Am,n(x, y) = J2

(
S̃m,n(x, y) Ĩm,n(x, y)

Dm,n(x, y) S̃n,m(y, x)

)

=
(

Dm,n(x, y) S̃n,m(y, x)

−S̃m,n(x, y) −Ĩm,n(x, y)

)
. (43)

It is defined by

PF
(

J2δmnδ(x − y) + √
χm(x)Am,n(x, y)

√
χn(y)

)

=
N∑

N1=0

· · ·
N∑

NM+1=0

M+1∏

m=1

1
Nm!

×
∫

R
N1+

dy(1)
N1

· · ·
∫

R
NM+1+

dy(M+1)
NM+1

M+1∏

m=1

Nm∏

i(m)=1

χm

(
y(m)

i(m)

)

×Pf
(

A
(

y(1)
N1

, y(2)
N2

, . . . , y(M+1)
NM+1

))
, (44)

where A
(

y(1)
N1

, y(2)
N2

, . . . , y(M+1)
NM+1

)
denotes the 2

∑M+1
m=1 Nm × 2

∑M+1
m=1 Nm skew-

symmetric matrices constructed from Eq. (43) as

A
(

y(1)
N1

, y(2)
N2

, . . . , y(M+1)
NM+1

)
=
(

Am,n(y(m)
i , y(n)

j )
)

1≤i≤Nm,1≤j≤Nn,1≤m,n≤M+1

for Nm = 1, 2, . . . , N, 1 ≤ m ≤ M + 1. Comparison of Eqs. (30) and (42) with
Eq. (44) immediately gives the following statement.

Theorem 3.1. The N-particle non-colliding system of squared generalized mean-
ders Y(t), t ∈ [0, T] is a Pfaffian process, in the sense that any multitime correlation
function is given by a Pfaffian

ρY
N,T

(
t1, {y(1)

N1
}; . . . ; tM+1, {y(M+1)

NM+1
}
)

= Pf
(

A
(

y(1)
N1

, . . . , y(M+1)
NM+1

))
.
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4 Skew-orthogonal functions and matrix inversion

4.1 Skew-symmetric inner products

Consider the N × N skew-symmetric matrix A0 = ((A0)ij)1≤i,j≤N with

(A0)ij = 〈i|ĴN |j〉 = 〈i|m, x〉〈m, x|Ĵ|n, y〉〈n, y|j〉, i, j = 1, 2, . . . , N. (45)

In order to clarify the fact that each element (A0)ij is a functional of the polyno-
mials Mi−1(x) and Mj−1(x) through Eq. (37), we introduce the skew-symmetric
inner product

〈f , g〉 ≡
∞∫

0

dx

∞∫

0

dy F(x, y)̃p(ν,κ)(t1, x|0)̃p(ν,κ)(t1, y|0)f (x)g(y), (46)

where

F(x, y) =
∞∫

0

dw

w∫

0

dz

∣∣∣∣
p̃(ν,κ)(T − t1, z|x) p̃(ν,κ)(T − t1, w|x)

p̃(ν,κ)(T − t1, z|y) p̃(ν,κ)(T − t1, w|y)

∣∣∣∣ , (47)

for x, y ∈ R+. Then we have the expression

(A0)ij = 〈Mi−1, Mj−1〉, i, j = 1, 2, . . . , N. (48)

We now rewrite the skew-symmetric inner product (46) by using the simpler
one

〈f , g〉∗ = −〈g, f 〉∗

≡
∞∫

0

dw e−w/2wa

w∫

0

dz e−z/2za
{

f (z)g(w) − f (w)g(z)

}
, (49)

which we call the elementary skew-symmetric inner product. Remind that p̃(ν,κ)

is given by Eq. (27) using the modified Bessel function. We will expand it in
terms of the Laguerre polynomials, Lα

j (x) = (x−αex/j!)(d/dx)j(e−xxj+α), α ∈ R,
j ∈ N0, using the formula

∞∑

j=0

�(j + 1)Lν
j (x)Lν

j (y)rj

�(j + 1 + ν)
= (xyr)−ν/2

1 − r
e− (x+y)r

1−r Iν

(
2
√

xyr

1 − r

)
, (50)

for |r| < 1, ν > −1. (See the corresponding calculation for the noncolliding
Brownian particles in [22], where the heat kernel was expanded in terms of the
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Hermite polynomials.) For this purpose, it is useful to introduce the variables

cn = tn(2T − tn)

T
, χn = 2T − tn

tn
, n = 1, 2, . . . , M + 1,

since we can see that

p̃(ν,κ)(tn − tm, cnη|cmξ) = 1
2(tn − tm)

Iν

(
2
√

ξηχn/χm

1 − χn/χm

)(
cnη

cmξ

)b/2

× exp

[
−
(

1
1 − χn/χm

− 1 + tm
2T

)
ξ −

(
1

1 − χn/χm
− tn

2T

)
η

]
,

and, if we apply the formula (50) with r = χn/χm, x = ξ and y = η, it is written
as

p̃(ν,κ)(tn − tm, cnη|cmξ) =
(

tm
tn

)ν+1

c−a−1
m ξκ/2(cnη)a

× exp

[
− tm

2T
ξ −

(
1 − tn

2T

)
η

] ∞∑

j=0

�(j + 1)

�(j + 1 + ν)

(
χn

χm

)j

Lν
j (ξ)Lν

j (η).

(51)

That is, cn and χn give the spatial scale of spread of N particles and the proper
temporal factor at time tn, respectively. (See Eq. (17) and explanation below
it in [34], where the variable cn was determined by showing that the one-
particle density obeys Wigner’s semicircle law scaled by cn for the non-colliding
Brownian particles.) In particular, for n = M + 1 we have

p̃(ν,κ)(T − tm, Tη|cmξ) = tν+1
m

Tκ/2+1
c−a−1

m ξκ/2ηa exp

[(
1 − tm

T

)
ξ

2

]

×e−ξ/2e−η/2
∞∑

j=0

�(j + 1)

�(j + 1 + ν)
χ

−j
m Lν

j (ξ)Lν
j (η), (52)

since cM+1 = T and χM+1 = 1. Then we obtain the relation

〈
f
( ·

c1

)
, g
( ·

c1

)〉
= 2−2ν−2T−κ

�(ν + 1)2

∞∫

0

dx

∞∫

0

dy e−xe−yxνyνf (x)g(y)

×
∞∑

j=0

∞∑

k=0

χ
−j−k
1 Lν

j (x)Lν
k(y)

×
〈 �(j + 1)

�(j + 1 + ν)
Lν

j ,
�(k + 1)

�(k + 1 + ν)
Lν

k

〉

∗. (53)
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4.2 Skew-orthogonal polynomials

For n ∈ Z and α ∈ R we define

(
n + α

n

)
=






�(n + α + 1)

�(n + 1)�(α + 1)
, if n ∈ N, α /∈ Z−,

(−1)n�(−α)

�(n + 1)�(−n − α)
, if n ∈ N, n + α ∈ Z−,

0, if n ∈ N, α ∈ Z−, n + α ∈ N0,
1, if n = 0,
0, if n ∈ Z−.

(54)

Note that for n ∈ N, α ∈ Z− with n + α ≤ −1,

(
n + α

n

)
= (−1)n

(−α − 1
n

)
.

By this definition, the equality

1
n!

(
d
dx

)n

xn+α

∣∣∣∣
x=1

=
(

n + α

n

)
(55)

holds for n ∈ N0, α ∈ R. Then Laguerre polynomials can be expressed as

Lα
j (x) =

j∑

�=0

(−1)�

�!
(

j + α

j − �

)
x� (56)

for any α ∈ R. Remark that applying Eq. (55) to the equation

1
n!

(
d

dx

)n

xn+α = 1
(n − 1)!

(
d

dx

)n−1

x(n−1)+α + x
1
n!

(
d

dx

)n

xn+(α−1),

with x = 1 and putting β = α + n, we have the identity

(
β

n

)
=
(

β − 1
n

)
+
(

β − 1
n − 1

)
, n ∈ Z, β ∈ R. (57)
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We use the following orthogonal relations and formulae on Laguerre poly-
nomials, which hold for α, β > −1;

∞∫

0

Lα
j (x)Lα

k(x)xαe−xdx = �(α + j + 1)

�(j + 1)
δjk, j, k ∈ N0, (58)

x
d

dx
Lα

j (x) = jLα
j (x) − (j + α)Lα

j−1(x), j ∈ N, (59)

Lα
j (x) = − d

dx
Lα

j+1(x) + d
dx

Lα
j (x), j ∈ N0, (60)

Lβ

j (x) =
j∑

k=0

(
j − k + β − α − 1

j − k

)
Lα

k(x), j ∈ N0. (61)

Remark 6. The identities (59) and (60) are given as Eqs. (6.2.6) and (6.2.7) in
[3]. The relation (61) is proved in [3] as (6.2.37) only when β ≥ α > −1. The
identity (see Eq. (54) and [42])

k∑

�=0

(
� − α − 1

�

)(
k − � + α − 1

k − �

)
= δk0,

can be used to invert the relation (61) to the form

Lα
� (x) =

�∑

j=0

(
� − j + α − β − 1

� − j

)
Lβ

j (x), � ∈ N0.

Therefore, the validity of Eq. (61) for β ≥ α > −1 implies that for α > β > −1.
We introduce the polynomials

Fj(x) = − d
dx

L2a
j+1(x), j ∈ N0, (62)

Gj(x) = d
dx

{
L2a

j+1(x) − j + 2a

j
L2a

j−1(x)

}
, j ∈ N. (63)

For k ∈ N0, j = 0, 1, 2, . . . , k, let

αk,j =
(

k − j + b

k − j

)
, if k is even,

αk,j = k + 2a

k

(
k − 2 − j + b

k − 2 − j

)
−
(

k − j + b

k − j

)
, if k is odd, (64)

The following lemmas are derived from the relations (58)–(61) with some
calculations.
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Lemma 4.1. For � ∈ N0

F2�(x) =
2�∑

j=0

α2�,jLν
j (x), (65)

G2�+1(x) =
2�+1∑

j=0

α2�+1,jL
ν
j (x). (66)

Lemma 4.2. For q, � ∈ N0

〈F2q, G2�+1〉∗ = −〈G2�+1, F2q〉∗ = r∗
qδq�, (67)

〈F2q, F2�〉∗ = 0, (68)

〈G2q+1, G2�+1〉∗ = 0, (69)

with

r∗
q ≡ 4�(2q + 2a + 2)

(2q + 1)! = 4�(2a + 1)

(
2q + 2a + 1

2q + 1

)
. (70)

Then if we define the monic polynomials in x of degree k for k ∈ N0 as

Rk(x) = k!
(

c1

χ1

)k k∑

j=0

αk,jL
ν
j

(
x
c1

)
χ

j
1, (71)

Lemma 4.2 gives the following through the relation (53) and the orthogonality
of the Laguerre polynomials (58).

Lemma 4.3. For q, � ∈ N0

〈R2q, R2�+1〉 = −〈R2�+1, R2q〉 = rqδq�,

〈R2q, R2�〉 = 0, 〈R2q+1, R2�+1〉 = 0,

where

rq = 2−2νT−κ

(
t21
T

)4q+1
(2q)!�(2q + 2 + 2a)

�(ν + 1)2 . (72)

The choice of the polynomials Fj(x) and Gj(x) in Eqs. (62) and (63), and
their explicit expansions in terms of the Laguerre polynomials (Lemma 4.1)
are crucial, since they enable us to determine the appropriate skew-orthogonal
polynomials (Lemma 4.3). As shown below, we are able to inverse the skew-
symmetric matrix A0 given by Eq. (45) readily for arbitrary (even) N, by using
these skew-orthogonal polynomials.
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4.3 Matrix inversion

Let b2k = b2k+1 = r−1/2
k , k ∈ N0, and determine the polynomials {Mi(x)}0≤i≤N−1

in Eq. (37) as

Mi(x) = biRi(x), i = 0, 1, . . . , N − 1.

Then by Eqs. (45) and (48) and Lemma 4.3, we have the equality

〈i|ĴN |j〉 = (JN)ij, i, j = 1, 2, . . . , N, (73)

where JN = IN/2 ⊗ J2. It is interesting to compare this result with Eq. (32).
Since J2

N = −IN , we can immediately obtain the inversion matrix appearing in
Eq. (40) as

〈i|(ĴN)�|j〉 = −(JN)ij, i, j = 1, 2, . . . , N. (74)

If we consider a semi-infinite matrix

J ≡ lim
N→∞ JN =

(
〈i|Ĵ|j〉

)

i,j∈N
,

its inverse matrix may be given by

J−1 =
(
〈i|Ĵ�|j〉

)

i,j∈N
= −J.

Using expansions (86), (93) and Lemma 5.4 given below with Lemmas 4.1 and
4.2, we can show

〈m, x|p̂|n, y〉 = 〈m, x|p̂Ĵ|i〉〈i|Ĵ�|j〉〈j|n, y〉,

and so

〈m, x|p̂Ĵp̂|n, y〉 = 〈m, x|p̂Ĵ|i〉〈i|Ĵ�|j〉〈j|Ĵp̂|n, y〉.

Then Eq. (41) is written as

S̃m,n(x, y) =





〈m, x|p̂Ĵ|i〉〈i|(ĴN)�|j〉〈j|n, y〉, if m ≥ n,

−〈m, x|p̂Ĵ|i〉〈i|(Ĵ� − (ĴN)�)|j〉〈j|n, y〉, if m < n,

Ĩm,n(x, y) = 〈m, x|p̂Ĵ|i〉〈i|(Ĵ� − (ĴN)�)|j〉〈j|Ĵp̂|n, y〉. (75)
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Now we introduce the notations, just following the previous papers for mul-
timatrix models [15,31,33], as

R(m)
i (x) ≡ 1

bi
〈m, x|i + 1〉

=
∞∫

0

dy Ri(y)̃p(ν,κ)(t1, y|0)̃p(ν,κ)(tm − t1, x|y), (76)

�(m)
i (x) ≡ − 1

bi
〈m, x|p̂Ĵ|i + 1〉

=
∞∫

0

dy R(m)
i (y)F(m)(y, x), (77)

for i = 0, 1, . . . , N − 1, m = 1, 2, . . . , M + 1, where

F(m)(x, y) =
∞∫

0

dw

w∫

0

dz

∣∣∣∣
p̃(ν,κ)(T − tm, z|x) p̃(ν,κ)(T − tm, w|x)

p̃(ν,κ)(T − tm, z|y) p̃(ν,κ)(T − tm, w|y)

∣∣∣∣ . (78)

It should be noted that R(1)
i (x) = Ri(x)̃p(ν,κ)(t1, x|0), 0 ≤ i ≤ N − 1, and

F(1)(x, y) = F(x, y), where Ri(x) and F(x, y) were defined by Eqs. (71) and
(47), respectively. Then we arrive at the following explicit expressions for the
elements of matrix kernel (43) of our Pfaffian processes,

Dm,n(x, y) = Dm,n
N (x, y) =

(N/2)−1∑

�=0

1
r�

[
R(m)

2� (x)R(n)

2�+1(y) − R(m)

2�+1(x)R(n)
2� (y)

]
,

Ĩm,n(x, y) = Ĩm,n
N (x, y) = −

∞∑

�=N/2

1
r�

[
�

(m)
2� (x)�

(n)

2�+1(y) − �
(m)

2�+1(x)�
(n)
2� (y)

]
,

Sm,n(x, y) = Sm,n
N (x, y) =

(N/2)−1∑

�=0

1
r�

[
�

(m)
2� (x)R(n)

2�+1(y) − �
(m)

2�+1(x)R(n)
2� (y)

]
,

(79)

and

S̃m,n(x, y) = S̃m,n
N (x, y) = Sm,n(x, y) − p̃(ν,κ)(tn − tm, y|x)1(m<n). (80)

5 Asymptotic behavior of correlation functions

In this section, we give the proof of our main theorem (Theorem 2.1), by
estimating the N → ∞ asymptotic of matrix kernel (43) of Theorem 3.1.
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Elementary calculation needed for the estimation is summarized in Appen-
dix B. Here aN ∼ bN , N → ∞ means aN/bN → 1, N → ∞. We assume that
T = N, tm = T + sm, 1 ≤ m ≤ M + 1 with s1 < s2 < · · · < sM < sM+1 = 0. We
put

Lν
j (x, −sm) = Lν

j (x) χ
j
m, L̂ν

j (x, sm) = �(j + 1)

�(j + 1 + ν)
Lν

j (x) χ
−j
m . (81)

5.1 Asymptotics of Rk(x) and R(m)

k (x)

Let

R̂k(x) = 1
k!

(
t21
T

)−k

Rk(x) =
k∑

j=0

αk,jL
ν
j

(
x
c1

, −s1

)
.

Since c1 ∼ N = T,

R̂2�(x) ∼ I(2�, b),

R̂2�+1(x) ∼ 2a

2� + 1
I(2� − 1, b) − I(2� + 1, b − 1) − I(2�, b − 1) (82)

∼ a

�
I(2�, b) − 2I(2�, b − 1), N → ∞,

where

I(q, c) ≡
q∑

j=0

(
q − j + c

q − j

)
Lν

j

( x
N

, −s1

)
=

q∑

j=0

(
j + c

j

)
Lν

q−j

( x
N

, −s1

)
,

for q ∈ N and c ∈ R. We set

2� = Nθ ,

and examine the asymptotic behavior of I(2�, c) as N → ∞ with some θ ∈
(0, ∞). When c ∈ Z−,

(
j + c

j

)
= (−1)j

(−c − 1
j

)
. Then from Eq. (B.10) in

Lemma B.2 with j = 2� (i.e. η = 1 in Eq. (B.5)), we can easily see

I(2�, c) =
−c−1∑

j=0

(
j + c

j

)
Lν

2�−j

( x
N

, −s1

)
∼ (Nθ)c+ν+1

(θx)ν
J̃(−c−1)
ν (θ , 1, x, −s1),

N → ∞. This result is generalized to the following lemma.
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Lemma 5.1. For any c ∈ R, θ ∈ (0, ∞), we have

I(2�, c) ∼ (Nθ)c+ν+1

(θx)ν
J̃(−c−1)
ν (θ , 1, x, −s1), N → ∞. (83)

Proof.

I(2�, c) =
2�∑

p=0

(
p + c

p

)
Lν

2�−p

( x
N

, −s1

)

=
2�∑

p=0

(
p + c

p

) p−1∑

k=0

1∑

q=0

(−1)q+1
(

1
q

)
Lν

2�−k−q

( x
N

, −s1

)

+
2�∑

p=0

(
p + c

p

)
Lν

2�

( x
N

, −s1

)
.

Repeating this procedure, we have

I(2�, c) =
∞∑

k=0

(−1)kak(2�, c)
k∑

q=0

(−1)q
(

k
q

)
Lν

2�−q

( x
N

, −s1

)
(84)

with

ak(2�, c) =
2�∑

p=0

(
p + c

p

) p−1∑

j1=0

j1−1∑

j2=0

· · ·
jk−1−1∑

jk=0

1 =
2�∑

p=0

(
p + c

p

)(
p
k

)
.

Using Eq. (57), we can rewrite ak(2�, c) as

ak(2�, c) =
2�∑

p=0

[(
p + c + 1

p

)(
p
k

)
−
(

p + c
p − 1

)(
p − 1

k

)

+
(

p + c
p − 1

){(p − 1
k

)
−
(

p
k

)}]

=
(

2� + c + 1
2�

)(
2�

k

)
− ak−1(2� − 1, c + 1).

Using this equation recursively, we obtain

ak(2�, c) =
k∑

r=0

(−1)r
(

2� + c + 1
2� − r

)(
2� − r
k − r

)
=
(

2� + c + 1
2� − k

)(
c + k

k

)
. (85)
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Thus Eq. (84) with Eq. (85) gives

I(2�, c) =
∞∑

k=0

(−1)k
(

2� + c + 1
2� − k

)(
c + k

k

) k∑

q=0

(−1)q
(

k
q

)
Lν

2�−q

( x
N

, −s1

)
.

By simple calculation with the estimate (B.2) and (B.10) of Lemma B.2, we
obtain Eq. (83) through the expression (18). ��

From above asymptotic of I(2�, c) with Eq. (82) we have the following prop-
osition.

Proposition 5.2. (1) Suppose that � ∈ N and 2� ∼ Nθ , N → ∞ for some
θ ∈ (0, ∞). Then

R̂2�(x) ∼ (Nθ)b+ν

(θx)ν
J̃(−b−1)
ν (θ , 1, x, −s1), N → ∞.

(2) Suppose that � ∈ N0 and 2� + 1 ∼ Nθ , N → ∞ for some θ ∈ (0, ∞). Then

R̂2�+1(x) ∼ 2(Nθ)b+ν

(θx)ν

[
ãJ(−b−1)

ν (θ , 1, x, −s1) − J̃(−b)
ν (θ , 1, x, −s1)

]
,

N → ∞.

We next examine asymptotic of R(m)

k (x). From the definition (76) and the
expression (51)

R(m)

k (x) = c1

∞∫

0

dη Rk(c1η)̃p(ν,κ)(t1, c1η|0)̃p(ν,κ)(tm − t1, x|c1η)

= k!
2ν+1�(ν + 1)

(
c1

χ1

)k ( 1
tm

)ν+1

xa exp

[(
−2 + tm

T

)
x

2cm

]

×
k∑

j=0

αk,jL
ν
j

(
x

cm
, −sm

)
. (86)

We put

R̂(m)

k (x) = 2νTν�(ν + 1)

�(k + 1 + 2a)

(
χ1

c1

)k

R(m)

k (x). (87)

If we set k ∼ Nθ as N → ∞, Eq. (B.1) in Appendix B gives

k!Tν

�(k + 1 + 2a)tν+1
m

exp

[(
−1 + tm

2T

)
x

cm

]
∼ N−(2a+1)θ−2a, N → ∞,

then we obtain the following from Proposition 5.2.
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Proposition 5.3. (1) Suppose that � ∈ N and 2� ∼ Nθ , N → ∞ for some
θ ∈ (0, ∞). Then

R̂(m)
2� (x) ∼ θ1−νx−κ/2

2
J̃(−b−1)
ν (θ , 1, x, −sm), N → ∞.

(2) Suppose that � ∈ N0 and 2� + 1 ∼ Nθ , N → ∞ for some θ ∈ (0, ∞). Then

R̂(m)

2�+1(x) ∼ θ−νx−κ/2

N

[
ãJ(−b−1)

ν (θ , 1, x, −sm) − J̃(−b)
ν (θ , 1, x, −sm)

]
,

N → ∞.

5.2 Asymptotics of �
(m)

k (x)

We put
Q2�(x) = F2�(x) and Q2�+1(x) = G2�+1(x), (88)

for � ∈ N0, and Qk ≡ 0 for k ∈ Z−. Lemma 4.1 gives the expansion formula of
Qk(x) in terms of {Lν

j (x)}. Here we give the formula to expand Lν
j (x) in terms

of {Qk(x)}. In other words, we provide the inverse of the matrix α = (αk,j) given
by Eq. (64), which is denoted by β = (βj,k).

Let b(n) = (n + 2a)/n, n ∈ N, and

b(m, n) =





b(m)b(m + 2) · · · b(n), if m, n are odd and m ≤ n,
1, if m, n are odd and m > n,
0, otherwise.

(89)

Then the following lemma holds.

Lemma 5.4. For j ∈ N0

Lν
j (x) =

j∑

k=0

βj,kQk(x). (90)

where βj,k, k, 1, . . . , j, j ∈ N0 are defined by the following:
When k is even

βj,k =





0, if j < k,(
j − k − b − 2

j − k

)
, if j ≥ k,

(91)

and, when k is odd

βj,k =






0, if j < k,

−
[(j+1)/2]∑

r=[(k+1)/2]
b(k + 2, 2r − 1)

(
j − 2r − b − 1

j − 2r + 1

)
, if j ≥ k. (92)
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Using Eq. (52), Eq. (78) is rewritten as

F(m)(y, x) =
(

1
T

)κ ( tm
cm

)2(ν+1)

(xy)κ/2 exp

{(
− tm

T

)
x + y
2cm

}

×
∞∑

p=0

∞∑

j=0

〈Lν
p, Lν

j 〉∗L̂ν
p

(
y

cm
, sm

)
L̂ν

j

(
x

cm
, sm

)
.

Hence from Eqs. (77) and (86), we have

�
(m)

k (x) = cm

∞∫

0

dη R(m)

k (cmη)F(m)(cmη, x)

= k!
2ν+1�(ν + 1)

(
c1

χ1

)k ( 1
cm

)ν+1 tν+1
m

Tκ
xκ/2 exp

{
− tmx

2Tcm

}

×
∞∑

j=0

〈
k∑

p=0

αk,pLν
p, Lν

j

〉

∗
L̂ν

j

(
x

cm
, sm

)
, (93)

where we have used the orthogonal relation (58) of Laguerre polynomials. Put

�̂
(m)

k (x) = 2νT−b�(ν + 1)

k!
(

χ1

c1

)k

�
(m)

k (x). (94)

Then we have the following proposition.

Proposition 5.5. (1) Suppose that � ∈ N and 2� ∼ Nθ , N → ∞ for some
θ ∈ (0, ∞). Then

�̂
(m)
2� (x) ∼ −θνxκ/2

∞∫

1

dξ ξ âJ(b+1)
ν (θ , ξ , x, sm), N → ∞. (95)

(2) Suppose that � ∈ N0 and 2� + 1 ∼ Nθ , N → ∞ for some θ ∈ (0, ∞). Then

�̂
(m)

2�+1(x) ∼ −2θ−1+νxκ/2

N
Ĵ(b+1)
ν (θ , 1, x, sm), N → ∞. (96)

Proof.

�̂
(m)

k (x) ∼ T−νxκ/2

2

∞∑

j=0

〈
k∑

p=0

αk,pLν
p, Lν

j

〉

∗
L̂ν

j

( x
N

, sm

)
, N → ∞,

= T−νxκ/2

2

∞∑

j=0

〈
Qk,

j∑

q=0

βj,qQq

〉

∗
L̂ν

j

( x
N

, sm

)
.
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By the skew orthogonality of {Qk} given by Lemma 4.2, we have

�̂
(m)
2� (x) ∼ T−νxκ/2r∗

�

2

∞∑

j=0

βj,2�+1L̂ν
j

( x
N

, sm

)
, N → ∞, (97)

�̂
(m)

2�+1(x) ∼ −T−νxκ/2r∗
�

2

∞∑

j=0

βj,2�L̂ν
j

( x
N

, sm

)
, N → ∞. (98)

By Eqs. (70) and (91), Eq. (98) gives

�̂
(m)

2�+1(x) ∼ −2�(2a + 1)T−νxκ/2
(

2� + 1 + 2a

2� + 1

)

×
∞∑

j=2�

(
j − 2� − b − 2

j − 2�

)
L̂ν

j

( x
N

, sm

)
, N → ∞. (99)

From Eq. (B.8) we have

∞∑

j=2�

(
j − 2� − b − 2

j − 2�

)
L̂ν

j

( x
N

, sm

)
=

∞∑

r=0

(
r − b − 2

r

)
L̂ν

2�+r

( x
N

, sm

)

=
∞∑

r=0

(
r − b − 2 + α

r

) α∑

p=0

(−1)p
(

α

p

)
L̂ν

2�+r+p

( x
N

, sm

)

∼ (2�)−α
∞∑

r=0

(
r − b − 2 + α

r

)
Ĵ(α)
ν (θ , η, x, sm), N → ∞, (100)

where Eq. (B.11) of Lemma (B.2) was applied. Setting j = 2�η = Nθη and using
Eq. (B.2) in Appendix B, we conclude that

�̂
(m)

2�+1(x) ∼ −2T−ν(2�)2a−αxκ/2
∞∑

j=2�

(j − 2� + 1)−b−2+α

�(−b − 1 + α)
Ĵ(α)
ν (θ , η, x, sm)

∼ − 2θ−1+νxκ/2

N�(−b − 1 + α)

∞∫

1

dη
Ĵ(α)
ν (θ , η, x, sm)

(η − 1)b+2−α
, N → ∞. (101)

Through the expression (19), we obtain Eq. (96).
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By Eq. (92) of Lemma 5.4 with Eq. (89)

∞∑

j=2�+1

βj,2�+1L̂ν
j

( x
N

, sm

)

= −1
b(1, 2� + 1)

∞∑

j=2�+1

L̂ν
j

( x
N

, sm

) [(j+1)/2]∑

r=�+1

b(1, 2r − 1)

(
j − 2r − b − 1

j − 2r + 1

)

= −1
b(1, 2� + 1)

S(�),

where

S(�) =
∞∑

r=�+1

b(1, 2r − 1)

∞∑

j=2r−1

L̂ν
j

( x
N

, sm

)(j − 2r − b − 1
j − 2r + 1

)
.

By this equation with the estimate (B.3) for b(1, 2r − 1) and Eq. (70), Eq. (97)
becomes

�̂
(m)
2� (x) ∼ −2T−ν(2� + 2)−a�(2a + 1)

(
2� + 1 + 2a

2� + 1

)
xκ/2S(�)

∼ −2T−ν(2� + 2)axκ/2S(�), N → ∞. (102)

From Eq. (100) with Eq. (B.3)

S(�) ∼
∞∑

r=�+1

(2r)a
(

1
2�

)α ∞∑

j=2r−1

(j − 2r + 1)−b−2+α

�(−b − 1 + α)
Ĵ(α)
ν (θ , η, x, sm)

∼ (2�)κ/2

2�(−b − 1 + α)

∞∫

1

dξ ξa

∞∫

ξ

dη
Ĵ(α)
ν (θ , η, x, sm)

(η − ξ)b+2−α
, N → ∞.

Thus

�̂
(m)
2� (x) ∼ − θνxκ/2

�(−b − 1 + α)

∞∫

1

dξ ξa

∞∫

ξ

dη
Ĵ(α)
ν (θ , η, x, sm)

(η − ξ)b+2−α

= −θνxκ/2

∞∫

1

dξ ξ âJ(b+1)
ν (θ , ξ , x, sm), N → ∞,

where we used the expression (19). This completes the proof of Proposition 5.5.
��
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5.3 Asymptotics of Dm,n(x, y), Ĩm,n(x, y), Sm,n(x, y), and S̃m,n(x, y)

From the expressions (79) with (72) and the definitions (87) and (94) we have

Dm,n
N (x, y) ∼

(N/2)−1∑

�=0

(
2�

N

)2a [
R̂(m)

2� (x)R̂(n)

2�+1(y) − R̂(m)

2�+1(x)R̂(n)
2� (y)

]
,

Ĩm,n
N (x, y) ∼ −

∞∑

�=(N/2)

(
2�

N

)−2a [
�̂

(m)
2� (x)�̂

(n)

2�+1(y) − �̂
(m)

2�+1(x)�̂
(n)
2� (y)

]
,

Sm,n
N (x, y) ∼

(N/2)−1∑

�=0

[
�̂

(m)
2� (x)R̂(n)

2�+1(y) − �̂
(m)

2�+1(x)R̂(n)
2� (y)

]
, N → ∞.

From Propositions 5.3 and 5.5 we obtain the following asymptotics:

Dm,n
N (x, y) ∼ D(sm, x; sn, y),

Ĩm,n
N (x, y) ∼ Ĩ(sm, x; sn, y),

Sm,n
N (x, y) ∼ S(sm, x; sn, y), N → ∞,

where D, Ĩ, S are defined by Eq. (21).
Next we study the asymptotic behavior of p̃(ν,κ)(tn − tm, y|x). From Eq. (51)

we have

p̃(ν,κ)(tn − tm, y|x)

=
(

tm
tn

)ν+1

c−a−1
m

(
x

cm

)κ/2

ya exp

[
− tmx

2Tcm

]
exp

[(
−2 + tn

T

)
y

2cn

]

×
∞∑

j=0

L̂ν
j

(
x

cm
, sm

)
Lν

j

(
y
cn

, −sn

)
.

Then by simple calculation with Lemma B.2 with α = 0, we have

p̃(ν,κ)(tn − tm, y|x) ∼
(y

x

)b/2 1
N

∞∑

j=0

e2(sm−sn)θηJν(2
√

θηx)Jν(2
√

θηy),

∼
(y

x

)b/2
G(sm, x; sn, y), N → ∞,

where G is defined by Eq. (23), and then S̃m,n
N (x, y) ∼ S̃(sm, x; sn, y), N → ∞.

Then, the proof of Theorem 2.1 is completed.
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Appendix A. Proof of Eq. (39)

We assume that the number of particles N is even. Consider the multiple integral

ZY
N,T[χ ] =

(
1

N!
)M+1 ∫

R
N(M+1)
+

M+1∏

m=1

dx(m) sgn
(
hN(x(M+1))

)

× det
1≤i,j≤N

[
Mi−1

(
x(1)

j

)
p̃(ν,κ)

(
t1, x(1)

j |0)(1 + χ1
(
x(1)

j

)
)
]

×
M∏

m=1

det
1≤i,j≤N

[
p̃(ν,κ)

(
tm+1 − tm, x(m+1)

j |x(m)
i

)(
1 + χm+1

(
x(m+1)

j

))]
.

By the definition (29) with (28) and (26), and by the equality (36), we have

�Y
N,T(f; θ) = ZY

N,T[χ ]
ZY

N,T[0] , (A.1)

where ZY
N,T[0] is obtained from ZY

N,T[χ ] by setting χm(x) ≡ 0 for all m =
1, 2, . . . , M + 1.

By repeated applications of the Heine identity

∫

R
N+<

dx det
1≤i,j≤N

[
φi(xj)

]
det

1≤i,j≤N

[
φ̄i(xj)

]
= det

1≤i,j≤N




∫

R+

dx φi(x)φ̄j(x)



 ,

for square integrable continuous functions φi, φ̄i, 1 ≤ i ≤ N, we have

ZY
N,T[χ ] =

∫

R
N+<

dy det
1≤i,j≤N

[ ∫

R
M+1+

M+1∏

m=1

dx(m) δ
(
yj − x(M+1)

)

×
{

Mi−1
(
x(1)

)
p̃(ν,κ)

(
t1, x(1)|0)(1 + χ1

(
x(1)

))}

×
M∏

m=1

{
p̃(ν,κ)

(
tm+1 − tm, x(m+1)|x(m)

)(
1 + χm+1

(
x(m+1)

))}]
.
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Using the notations in Sect. 3.2, it is expressed as

ZY
N,T[χ ] =

∫

R
N+<

dy det
1≤i,j≤N

[〈
i
∣∣
(

1 + 1
1 − χ̂ p̂+

χ̂ p̂
)

N

∣∣M + 1, yj
〉]

=
∫

R
N+<

dy det
1≤i,j≤N

[〈
M + 1, yi|

(
1 + p̂χ̂

1
1 − p̂−χ̂

)

N

∣∣j
〉]

,

since 〈m, x|(p̂+)k|n, y〉 = 〈n, y|(p̂−)k|m, x〉 ≡ 0 for k > n − m ≥ 0. Here we have
used the Chapman–Kolmogorov equation,

∫
R+ dy p̃(ν,κ)(t − s, y|x)̃p(ν,κ)(u − t,

z|y) = p̃(ν,κ)(u − s, z|x), 0 ≤ s ≤ t ≤ u ≤ T, x, y ∈ R+. Next we use the formula
of de Bruijn [9]

∫

R
N+<

dy det
1≤i,j≤N

[
φi(yj)

]
= Pf1≤i,j≤N




∫

R+

dy
∫

R+

dỹ sgn(ỹ − y)φi(y)φj(ỹ)



 ,

for integrable continuous functions φi, 1 ≤ i ≤ N, in which the Pfaffian is defined
by Eq. (24). Since (Pf(A))2 = det A for any even-dimensional skew-symmetric
matrix A, we have

(
ZY

N,T[χ ]
)2

= det
1≤i,j≤N

[〈
i
∣∣
(

1 + 1
1 − χ̂ p̂+

χ̂ p̂
)

N
Ĵ
(

1 + p̂χ̂
1

1 − p̂−χ̂

)

N

∣∣j
〉]

= det
1≤i,j≤N

[
(A0)ij + (A1)ij + (A2)ij + (A3)ij

]

with

(A0)ij = 〈i|ĴN |j〉,
(A1)ij = 〈

i
∣∣
( 1

1 − χ̂ p̂+
χ̂ p̂Ĵ

)

N
|j〉 = 〈

i
∣∣
(
χ̂

1
1 − p̂+χ̂

p̂Ĵ
)

N

∣∣j
〉
,

(A2)ij = 〈
i
∣∣
(

Ĵp̂χ̂
1

1 − p̂−χ̂

)

N

∣∣j
〉
,

(A3)ij = 〈
i
∣∣
(
χ̂

1
1 − p̂+χ̂

p̂Ĵp̂χ̂
1

1 − p̂−χ̂

)

N

∣∣j
〉
.

Since
(

ZY
N,T[0]

)2 = det1≤i,j≤N

[
(A0)ij

]
, Eq. (A.1) gives

{
�Y

N,T(f; θ)

}2

= det
1≤i,j≤N

[
δij + (A−1

0 A1)ij + (A−1
0 A2)ij + (A−1

0 A3)ij

]
. (A.2)
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By our notation (38), (A−1
0 )ij = 〈i|(ĴN)�|j〉, and it is easy to confirm that

Eq. (A.2) is written in the form

{
�Y

N,T(f; θ)

}2

= det
1≤i,j≤N

[
δij + 〈i|B|m, x〉〈m, x|C|j〉

]
, (A.3)

where we have introduced B and C as the following two-dimensional row and
column vector-valued operators,

B =
(

(ĴN)� ◦ χ̂ 1
1−p̂+χ̂

−(ĴN)� ◦
(

1 + χ̂ 1
1−p̂+χ̂

p̂
)

Ĵp̂χ̂
)

,

C =



p̂Ĵ

− 1
1−p̂−χ̂



 .

The determinant (A.3) is equivalent with the Fredholm determinant,

Det〈m, x|I2 + C ◦ B|n, y〉.

Introducing matrix-valued operators,

K+ =



1 − p̂+χ̂ 0

0 1



 , K− =



1 0

0 1 − p̂−χ̂



 , K̂ =



1 −p̂Ĵp̂χ̂

0 1



 ,

we have

I2 + C ◦ B = K−−1



K−K+ +



p̂ĴJ �

N p̂Ĵ
(

1 − J �
N Ĵ

)
p̂

−J �
N J �

N Ĵp̂



 χ̂



K+−1K̂

= K−−1



I2 +



p̂ĴJ �

N − p̂+ p̂Ĵp̂ − p̂ĴJ �
N Ĵp̂

−J �
N J �

N Ĵp̂ − p̂−



 χ̂



K+−1K̂,

where J �
N = ◦(ĴN)�◦. From the orthogonality (31) and the definitions (34) of

the operators p̂+ and p̂−, we have the fact that

Det〈m, x|K+|n, y〉 = Det〈m, x|K−|n, y〉 = Det〈m, x|K̂|n, y〉 = 1.

Then Eq. (39) is derived.
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Appendix B. Elementary calculation for asymptotics estimation

By Stirling’s formula �(x) ∼ √
2πxx−1/2e−x, x → ∞, we have

�(n + α + 1)

�(n + 1)
∼ (n + 1)α , n → ∞, (B.1)

(
n + α

n

)
∼ (n + 1)α

�(α + 1)
, n → ∞, (B.2)

for any α ∈ R \ Z−, and

b(1, 2� − 1) = �(2a + 1)

2a�(a + 1)

(
2� + 2a

2�

)/(
� + a

�

)
∼ (2�)a, � → ∞,

(B.3)

b(2� + 1, 2p − 1) = b(1, 2p − 1)

b(1, 2� − 1)
∼
(p

�

)a
, � → ∞, (B.4)

for �, p ∈ N with � < p, where b(m, n) is defined by Eq. (89).
From now on, we assume that T = N, tm = T + sm with sm < 0. We set

2� = Nθ and j = 2�η, (B.5)

and consider the limit N → ∞ with some η, θ ∈ (0, ∞). Then we have

χ
j
m =

(
2T − tm

tm

)j

=
(

1 − 2sm

tm

)Nθη

∼ exp (−2smθη) , N → ∞,

and

α∑

p=0

(−1)p
(

α

p

)
χ

j−p
m ∼ (2�)−α

(
d

dη

)α

exp (−2smθη) , N → ∞. (B.6)

We use the following identities (see Eq. (54) and pages 8, 201, and 202 in
[42]).
(1) Let α ∈ N0 and c ∈ R. Then

α∑

p=0

(−1)p
(

α

p

)(
n − p + c
n − p − j

)
=
(

n − α + c
n − j

)
. (B.7)

(2) Let α ∈ N0, c ∈ R and ak, k = 1, 2, . . . , be a sequence in R. Then

∞∑

r=0

(
r + c

r

)
ar =

∞∑

r=0

(
r + c + α

r

) α∑

p=0

(−1)p
(

α

p

)
ar+p. (B.8)
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(3) Let α ∈ N0, and ak, bk, k = 1, 2, . . . , be sequences in R. Then

α∑

k=0

(−1)k
(

α

k

)
akbk =

α∑

β=0

(
α

β

) β∑

p=0

(−1)p
(

β

p

)
ap

α−β∑

q=0

(−1)q
(

α − β

q

)
bq.

(B.9)

Lemma B.1. For any α ∈ N0 and w ≥ 0 we have

α∑

p=0

(−1)p
(

α

p

)
Lν

n−p

(w
n

)
∼
(w

n

)α−ν
(

d
dw

)α {
wν/2Jν(2

√
w)

}
, n → ∞.

Proof. From the definition of the Laguerre polynomials (56) and (B.7), we have

α∑

p=0

(−1)p
(

α

p

)
Lν

n−p (y) =
α∑

p=0

(−1)p
(

α

p

) n−p∑

j=0

(−1)j
(

n − p + ν

n − p − j

)
yj

j!

=
n∑

j=0

(−1)j

j!
(

n − α + ν

n − j

)
yj.

Hence, by Eq. (B.2)

lim
n→∞

(w
n

)ν−α
α∑

p=0

(−1)p
(

α

p

)
Lν

n−p

(w
n

)

= lim
n→∞

n∑

j=0

(−1)j

j!
(

n − α + ν

n − j

)(w
n

)j+ν−α

=
∞∑

j=0

(−1)j wν+j−α

�(j − α + ν + 1)j!

=
(

d
dw

)α



∞∑

j=0

(−1)j wν+j

�(ν + j + 1)j!



 .

Then we obtain the lemma. ��

Applying the above lemma, we obtain the following asymptotics, where Lν
j

and L̂ν
j are defined by Eq. (81).
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Lemma B.2. For any α ∈ N0, θ , η ∈ (0, ∞), and x ∈ R+ we have

α∑

p=0

(−1)p
(

α

p

)
Lν

j−p

( x
N

, −sm

)
∼ (2�)ν−α

(θx)ν
J̃(α)
ν (θ , η, x, −sm), N →∞, (B.10)

α∑

p=0

(−1)p
(

α

p

)
L̂ν

j+p

( x
N

, sm

)
∼ (2�)−α Ĵ(α)

ν (θ , η, x, sm), N → ∞. (B.11)

Proof. Since

α∑

p=0

(−1)p
(

α

p

)
Lν

j−p

( x
N

)
χ

j−p
m

=
α∑

β=0

(
α

β

) β∑

p=0

(−1)p
(

β

p

)
Lν

j−p

( x
N

) α−β∑

q=0

(−1)q
(

α − β

q

)
χ

j−q
m ,

by Eq. (B.9), the asymptotic Eq. (B.10) is derived from Eq. (B.6) and Lemma
(B.1) with n = j = Nθη, w = θηx. From Eq. (B.9), we have

α∑

k=0

(−1)k
(

α

k

)
L̂ν

j+k

( x
N

, sm

)

=
α∑

β=0

(
α

β

) β∑

p=0

(−1)p
(

β

p

)
Lν

j+p

( x
N

)
χ

−(j+p)
m

×
α−β∑

q=0

(−1)q
(

α − β

q

)
�(j + q + 1)

�(j + q + 1 + ν)
. (B.12)

By Eq. (B.1), we see

α−β∑

q=0

(−1)q
(

α − β

q

)
�(j + q + 1)

�(j + q + 1 + ν)

= ν

α−β−1∑

q=0

(−1)q
(

α − β − 1
q

)
�(j + q + 1)

�(j + q + 2 + ν)

= ν(ν + 1) · · · (ν + α − β − 1)�(j + 1)

�(j + 1 + α − β + ν)

∼ (2�)−(α−β+ν)

(
− d

dη

)α−β

η−ν , N → ∞.
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On the other hand, Eq. (B.10) gives

β∑

p=0

(−1)p
(

β

p

)
Lν

j+p

( x
N

)
χ

−(j+p)
m ∼ (2�)ν−β

(
− d

dη

)β {
ην Ĵν(θ , η, x, sm)

}
.

Hence, the asymptotic Eq. (B.11) is derived from Eq. (B.12). ��

Appendix C. On temporally homogeneous limit

Lemma C.1. For any c ∈ R and η, θ , x ≥ 0, we have that as t → ∞

J̃(c)
ν (θ , η, x, t) ∼ (2tθ)c(θηx)ν/2Jν(2

√
θηx)e2tθη, (C.1)

Ĵ(c)
ν (θ , η, x, −t) ∼ (2tθ)c(θηx)−ν/2Jν(2

√
θηx)e−2tθη, (C.2)

∞∫

1

dξ ξ âJ(c+1)
ν (θ , ξ , x, −t) ∼ (2tθ)c(θx)−ν/2Jν(2

√
θx)e−2tθ . (C.3)

Proof. From the expression (18) with the definition (14), we have

J̃(c)
ν (θ , η, x, t) = e2tθη

�(−c)

∞∑

k=0

(−1)kηk−c

k!(k − c)

k∑

j=0

(
k
j

)
J̃(j)
ν (θ , η, x, 0)(2tθ)k−j

∼ e2tθη

�(−c)
(2tθ)c̃Jν(θ , η, x, 0)

∞∑

k=0

(−1)k(2tθη)k−c

k!(k − c)
, t → ∞.

From the relation

d
dz

∞∑

k=0

(−1)kzk−c

k!(k − c)
= z−c−1e−z,

and the equation

�(−c) =
∞∑

k=0

(−1)k

k!(k − c)
+

∞∫

1

dz z−c−1e−z,

(see (1.1.19) in [3]), we have

�(−c) = lim
t→∞

∞∑

k=0

(−1)k(2tθη)k−c

k!(k − c)
.
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Then we conclude

J̃(c)
ν (θ , η, x, t) ∼ e2tθη(2tθ)c̃Jν(θ , η, x, 0) = (2tθ)c̃Jν(θ , η, x, t), t → ∞.

Hence Eq. (C.1) is derived from Eq. (14).
Let n = [c + 1]+ and β > 0 with c = n − β. Since

(
− d

dη

)n

Ĵν(θ , η, x, −t) ∼ (2tθ)n̂Jν(θ , η, x, −t), t → ∞,

Eq. (19) gives

Ĵ(c)
ν (θ , η, x, −t) ∼ (2tθ)n

�(β)

∞∫

0

dξ ξβ−1̂Jν(θ , η + ξ , x, −t)

= (2tθ)n−β

�(β)

∞∫

0

dζ ζ β−1̂Jν

(
θ , η + ζ

2tθ
, x, −t

)

∼ (2tθ)ĉJν(θ , η, x, −t), t → ∞.

Then Eq. (C.2) is derived from Eq. (15). From Eq. (C.2) we have

∞∫

1

dξ ξ âJ(c+1)
ν (θ , ξ , x, −t) ∼ (2tθ)c+1

∞∫

1

dξ ξ âJν(θ , ξ , x, 0)e−2tθξ

∼ (2tθ)ĉJν(θ , 1, x, −t), t → ∞.

This completes the proof. ��
Applying the above lemma, we have as sm, sn → −∞ with the difference

sn − sm fixed

D(sm, x; sn, y) ∼ (xy)b/2(sn − sm)

22b+3(smsn)b+1

1∫

0

dθ θ−bJν(2
√

θx)Jν(2
√

θy)e−2(sm+sn)θ

∼ (xy)b/2(sm − sn)

22b+4(sm + sn)(smsn)b+1
Jν(2

√
x)Jν(2

√
y)e−2(sm+sn),

Ĩ(sm, x; sn, y) ∼ 22b+1(smsn)b(sn − sm)

(xy)b/2

∞∫

1

dθ θbJν(2
√

θx)Jν(2
√

θy)e2(sm+sn)θ

∼ 22b(smsn)b(sn − sm)

(sm + sn)(xy)b/2
Jν(2

√
x)Jν(2

√
y)e2(sm+sn),
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and

S(sm, x; sn, y) ∼
(y

x

)b/2
1∫

0

dθ Jν(2
√

θx)Jν(2
√

θy)e2(sm−sn)θ .

It is then clear that

lim
sm,sn→−∞ D(sm, x; sn, y)Ĩ(sm, x; sn, y) = 0.
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