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Quantization of a random-walk model is performed by giving a qudit �a multicomponent wave function� to
a walker at site and by introducing a quantum coin, which is a matrix representation of a unitary transforma-
tion. In quantum walks, the qudit of the walker is mixed according to the quantum coin at each time step, when
the walker hops to other sites. As special cases of the quantum walks driven by high-dimensional quantum
coins generally studied by Brun, Carteret, and Ambainis, we study the models obtained by choosing rotation as
the unitary transformation, whose matrix representations determine quantum coins. We show that Wigner’s
�2j+1�-dimensional unitary representations of rotations with half-integers j’s are useful to analyze the prob-
ability laws of quantum walks. For any value of half-integer j, convergence of all moments of walker’s
pseudovelocity in the long-time limit is proved. It is generally shown for the present models that, if �2j+1� is
even, the probability measure of limit distribution is given by a superposition of �2j+1� /2 terms of scaled
Konno’s density functions, and if �2j+1� is odd, it is a superposition of j terms of scaled Konno’s density
functions and a Dirac’s delta function at the origin. For the two-, three-, and four-component models, the
probability densities of limit distributions are explicitly calculated and their dependence on the parameters of
quantum coins and on the initial qudit of walker is completely determined. Comparison with computer simu-
lation results is also shown.
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I. INTRODUCTION

No one doubts the importance of random-walk models in
physics, mathematics, and computer sciences. In particular,
when we explain basic concepts of statistical physics �1�,
stochastic processes in physics and chemistry �2�, and sto-
chastic algorithms �3�, introduction of random-walk models
is very useful and effective. It is interesting to see that sys-
tematic study of quantization of random walks is not old
�4–7�. As expected, the study of quantum walks is fruitful
and its results have been applied to solve the transport prob-
lems in solid-state physics of strongly correlated electron
systems �8�, to derive non-Gaussian-type central limit theo-
rems in probability theory �9–11�, and to invent new algo-
rithms in the quantum information theory �12,13�. The re-
search field of quantum walks is growing widely �14–19�
and mathematical understanding of the new models is be-
coming deeper �20–24� in recent years.

It should be noted here that, from the viewpoint of stan-
dard quantum mechanics, “to quantize random walks” is a
contradictory concept, since in quantum mechanics, time-
evolution of a state vector ���t��, or a wave function ��x , t�,
is given by a deterministic unitary transformation associated
with the Hamiltonian and the probability concept appears in
the theory only when we perform observation of physical
quantities, i.e., when we calculate the probability density
p�x , t�= ���x , t��2 at a given time. On the other hand, random
walk is a typical example of stochastic processes, in which
we toss a coin to select a walk at each time step. In an earlier
paper �25�, it was shown that the one-dimensional standard

random walk can be realized by a random-turn model �26�,
in which a coin is represented by a 2�2 stochastic matrix
and that, if we replace the matrix by a 2�2 unitary matrix, a
one-dimensional quantum-walk model is obtained. This ar-
gument is not only heuristic but also generic, since it implies
that quantization of random-walk models can be done by
introducing appropriate unitary matrices such that they play
the roles of “quantum coins.” The obtained time-evolution of
quantum walk is described by a multicomponent version of
the quantum-mechanical equation of motion. For the stan-
dard quantum-walk model on one-dimensional lattice Z
= �. . . ,−2 ,−1 ,0 ,1 ,2 , . . . � with the nearest-neighbor hopping,
the equation is identified with the Weyl equation for two-
component wave functions �25�. It should be remarked that
such multicomponent equations have been usually used in
relativistic quantum mechanics �27�.

It should be noted that in order to discuss the relationship
between classical and quantum walks Brun et al. showed a
method to construct discrete quantum-walk models for mul-
ticomponent wave functions driven by high-dimensional
quantum coins that are greater than 2�2 matrices �18�.
There they considered a 2M-dimensional space with M
=2,3 , . . ., whose basis is given by tensor products of M bi-
nary vectors. A quantum coin, which is first defined as an

abstract unitary transformation Û, has a 2M �2M matrix rep-
resentation in the space �18�. Their method is very general
and useful as well as the tensor-product method is in the
group representation theory �28�. See also Refs. �17,29,30�
for tensor-product models.

In the present paper, we adopt the rotation operator R̂
specified by the Euler angles �, �, and � �see Eq. �3� in Sec.

II� as the unitary transformation Û and introduce a family of
quantum-walk models on one-dimensional lattice Z. The

two-dimensional representations of R̂ can be identified with
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2�2 quantum-coin matrices used in the standard quantum
walks with qubits. In the wave-number space �k-space� the
shift matrix S�k� is generally given by a matrix representa-

tion of R̂, if we set the parameters �=−2k, �=�=0 �see Sec.

III�. Our choice Û= R̂ is thus very suitable to study one-
dimensional quantum walk problems.

Instead of using the tensor-product representations fol-
lowing Brun et al., we will use in this paper the
�2j+1�-dimensional unitary representations R�j��� ,� ,�� of

the rotation operator R̂ with half-integers j’s as quantum
coins, which are called the rotation matrices �31�. The reason
is the following. The 2M-dimensional representations with
M �2 constructed by tensor products are reducible; by
changing basis through appropriate orthogonal transforma-
tions, tensor-product matrices are block-diagonalized.
Wigner’s theory showed that each block with size 2j
+1�j=0,1 /2 ,1 ,3 /2 , . . . � is given by a rotation matrix
R�j��� ,� ,�� �32�. In other words, we will use the irreducible

representations of R̂. In Sec. IV, reducibility of the tensor-
product models of quantum walks to the present models will
be generally shown and demonstrated using examples.

In our model with j and three parameters ��, �, and ��, a
quantum walker is assumed to be at the origin at time t=0
with a �2j+1�-component qudit

�0
�j� =	

qj

qj−1

¯

q−j+1

q−j


 with �
m=−j

j

�qm�2 = 1, �1�

where qm�C �complex numbers�, m=−j ,−j+1, . . . , j. At
each time step t=1,2 ,3 , . . ., the components of qudit are
mixed according to a quantum coin R�j��� ,� ,�� and the
walker hops to �2j+1� sites on Z, as illustrated by Fig. 1 for
j=1/2, 1, 3 /2, and 2 �see Eq. �15� in Sec. III�. When j
=1/2, R�1/2��� ,� ,�� can be identified with an element of
SU�2� appropriately parametrized by the three variables �the
Cayley-Klein parameters� and the model is reduced to the
standard two-component model �25�. It should be noted here
that, when j is an integer �i.e., �2j+1� is odd�, the walker can
stay at the same position in a step.

Using the method of �11�, we will prove that any mo-
ments of pseudovelocity of the walker, which is defined by
Xt / t �the position at time t, Xt, divided by t�, converge in the
long-time limit t→	, and show that the probability measure
of limit distribution is generally described by a superposition
of appropriately scaled forms of a function


�x;a� =
�1 − a2

��1 − x2��a2 − x2
1��x���a��, �2�

where 1�� denotes the indicator function of a condition ;
1��=1 if  is satisfied and 1��=0 otherwise, and a is a real
parameter. It is the density function first introduced by
Konno to describe the limit distributions of the standard two-
component quantum walks in his weak limit-theorem �9,10�.

�As shown in Fig. 2�a� in Sec. VI, 
�x ;a� is inversed bell-
shaped on a finite support x� �−a ,a� in big contrast with the
Gaussian distribution, which describes the diffusion scaling
limit of the classical random walks.� More precisely speak-
ing, when �2j+1� is even, the probability density function of
limit distribution consists of �2j+1� /2 terms of Konno’s den-
sity functions �2�, and when �2j+1� is odd, it consists of j
terms of Konno’s and a point mass at the origin, which cor-
responds to the positive probability to retain the position of
the walker in a step �see Eq. �72��.

The weight functions M�j,m� of these Konno’s density
functions �and the weight ��j� of Dirac’s delta function at the
origin, when �2j+1� is odd� in the superposition depend on
the parameters of quantum coin and the �2j+1� components
of initial qudit �1� of the quantum walker. We have found
that the representation theory of groups �28� is useful to cal-
culate the weight functions. Especially the Wigner formula
for rotation matrices �31,32� is critical. In this paper we give
the explicit forms of weight functions for j=1/2, 1, and 3/2
�two-, three- and four-component models, respectively� and
these results imply that the weight functions M�j,m� are gen-
erally given by polynomials. Through these polynomials, the
initial-qudit dependence of the limit distribution of
pseudovelocity is completely determined.

This paper is organized as follows. In Sec. II, the Wigner
formula of �2j+1�-dimensional irreducible representation of
the rotation group SO�3� is summarized. The family of
quantum-walk models associated with the rotation matrices
is defined for quantum walkers with a �2j+1�-component
qudit in Sec. III. In Sec. IV we also introduce the tensor-
product models of one-dimensional quantum walks associ-

ated with the rotation operator R̂ following the general theory
of Brun et al. �18�. There we show the reducibility of the
tensor-product models to our models. Section V is devoted to
proving the generalized weak limit theorem �convergence of
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FIG. 1. �Color online� Elementary hopping of a quantum walker
in the models with �a� j=1/2 �two-component model�, �b� j=1
�three-component model�, �c� j=3/2 �four-component model�, and
�d� j=2 �five-component model�. When �2j+1� is odd, the walker
can stay at the same position in a step, as shown by cyclic arrows at
the origin in �b� and �d�.
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all moments� for pseudovelocities of quantum walks. There
the polynomials, which give the weights of Konno’s density
functions and the point mass in the limit distributions, are
listed for j=1/2, 1, and 3/2, explicitly. Comparison with
computer simulation with the present analytic results is given
in Sec. VI. In this last section, we also discuss relations
between our results and other multicomponent models
�18,29,30,33–35� and possible future problems.

II. WIGNER FORMULA OF „2j+1…-DIMENSIONAL
REPRESENTATIONS OF ROTATION GROUP

Any rotation in the three-dimensional real space R3 is
uniquely specified by three rotation angles �, �, and � called
the Euler angles. In the quantum mechanics, the rotation with
the Euler angles �, �, and � is given by an operator of the
form �see, for instance, �31��

R̂��,�,�� = e−i�Ĵ3e−i�Ĵ2e−i�Ĵ3, �3�

where Ĵ= �Ĵ1 , Ĵ2 , Ĵ3� is the vector operator of angular mo-
mentum, whose elements satisfy the su�2� Lie algebra,

�Ĵk, Ĵ�� = i�
m=1

3

�k�mĴm, k,� = 1,2,3, �4�

with the completely antisymmetrical tensor with three indi-
ces �k�m �28�. Let the ket-vectors �j ,m�, j
=0,1 /2 ,1 ,3 /2 , . . ., m=−j ,−j+1, . . . , j, denote the normal-

ized eigenstates of Ĵ2=�k=1
3 Ĵk

2 and Ĵ3 such that Ĵ2�j ,m�= j�j

+1��j ,m� and Ĵ3�j ,m�=m�j ,m�. �We set �=1 in this paper.�
Then, for each fixed value of half-integer j, a �2j+1�� �2j
+1� unitary matrix R�j��� ,� ,��= �R

mm�
�j� �� ,� ,��� is defined

with its elements

Rmm�
�j� ��,�,�� = j,m�R̂��,�,���j,m�� , �5�

m ,m�=−j ,−j+1, . . . , j. We can show that

Rmm�
�j� ��,�,�� = e−i�mrmm�

�j� ���e−i�m� �6�

with

rmm�
�j� ��� = �

�

��j,m,m�,���cos
�

2
�2j+m−m�−2��sin

�

2
�2�+m�−m

,

�7�

where

��j,m,m�,�� = �− 1��

�
��j + m�!�j − m�!�j + m��!�j − m��!

�j − m� − ��!�j + m − ��!�!�� + m� − m�!
.

�8�

In Eq. �7� the summation �� extends over all integers of � for
which the arguments of the factorials are positive or null
�0!=1�. The matrix �6� gives a �2j+1�-dimensional irreduc-
ible representation of the rotation group SO�3� and is called
the rotation matrix. Equation �7� is known as the Wigner

formula �31,32�. In the present paper, when we write matri-
ces and vectors whose elements are labeled by m ,m�, we
will assume that the indices m and m� run from j to −j in
steps of −1. In Appendix A, we give explicit expressions of
matrices r�j����= �r

mm�
�j� ���� for j=1/2, 1, and 3/2.

III. QUANTUM-WALK MODELS WITH
„2j+1…-COMPONENT QUDITS

Here we propose a family of models of quantum walks on
the one-dimensional lattice Z, in which each walker has a
�2j+1�-component qudit �1�. In the previous paper �25�, we
reported the weak limit theorem for the two-component
model. That model is generated by a quantum coin repre-
sented by a matrix in SU�2�,

A = � uei� �1 − u2ei�

− �1 − u2e−i� ue−i� � , �9�

u � �− 1,1�,�,� � �− �,�� ,

and a spatial shift-operator on Z, which is represented by a
matrix

S�k� = �eik 0

0 e−ik �, k � �− �,�� �10�

in the k-space. If we compare these matrices with Eq. �6�
with j=1/2 and Eq. �A1� in Appendix A, we find that they
are the special cases of R�1/2��� ,� ,��;

A = R�1/2��� − � − �,2 arccos�u�,− � − � + �� ,

S�k� = R�1/2��− 2k,0,0� . �11�

From the viewpoint of the group theory, we can give the
following remark. In �25� we used the fact that SU�2��S3

�� the three-dimensional unit sphere in R4� and the quantum
coin A was parametrized by three real numbers, u, �, and �
�the Cayley-Klein parameters�, corresponding the dimen-
sionality 3 of the group space. On the other hand, we are
now regarding the quantum coin A as a two-dimensional
representation of the rotation group SO�3�, and thus the three
parameters are identified with the Euler angles for rotations
in the three-dimensional real-space R3.

This observation had led us to adopt the
�2j+1�-dimensional representation of the rotation group,
R�j��� ,� ,��, as a quantum coin to mix �2j+1� components
in qudit �1�. The spatial shift-matrix is given by S�j��k�
=R�j��−2k ,0 ,0�=diag�e2ijk ,e2i�j−1�k , . . . ,e−2ijk�.

We assume at the initial time t=0 that the walker is lo-
cated at the origin. Then, in the k-space, the
�2j+1�-component wave function of the walker at time t is
given by

�̂�j��k,t� = �V�j��k��t�0
�j�, t = 0,1,2, . . . , �12�

where
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V�j��k� = V�j��k;�,�,��

� S�j��k�R�j���,�,�� = R�j��� − 2k,�,�� . �13�

The time evolution in the real space Z is then obtained by
performing the Fourier transformation,

��j��x,t� = �
−�

� dk

2�
�̂�j��k,t�eikx,

�̂�j��k,t� = �
x�Z

��j��x,t�e−ikx, �14�

as

�m
�j��x,t + 1� = �

m�=−j

j

Rmm�
�j�

�m�
�j� �x + 2m,t�, t = 0,1,2, . . . ,

�15�

where �m
�j��x , t� denotes the mth component of the

�2j+1�-component wave function ��j��x , t�.
Now the stochastic process of the �2j+1�-component

quantum walk is defined on Z as follows. Let Xt
�j� be the

position of the walker at time t. The probability that we find
the walker at site x�Z at time t is given by

Prob�Xt
�j� = x� = P�x,t� = ���j��x,t��†��j��x,t� , �16�

where ���j��x , t��† is the Hermitian conjugate of ��j��x , t�. As
shown in �25�, the rth moment of Xt

�j� is given by

�Xt
�j��r� � �

x�Z
xrP�x,t� = �

−�

� dk

2�
��̂�j��k,t��†�i

d

dk
�r

�̂�j��k,t� ,

�17�

r = 0,1,2, . . . .

IV. TENSOR PRODUCT MODELS ASSOCIATED WITH
ROTATION OPERATOR AND THEIR REDUCIBILITY

A. Tensor product models

In this section we use the notation �1�= �1/2 ,1 /2�, �−1�
= �1/2 ,−1/2� for the binary states with j=1/2. Let M
� �2,3 ,4 , . . . �. For an M-component variable m
= �m1 ,m2 , . . . ,mM� with mn� �−1,1� ,1�n�M, we will
write �m�=�n=1

M mn.
Following Brun et al. �18� we consider the

2M-dimensional space spanned by the bases ��m��m��−1 , 1�M,
which are defined as tensor products

�m� = �
n=1

M

�mn� . �18�

Note that they are orthonormal; m �m��=�m,m���n=1
M �mnmn�

.
Let

Rm,m�
�M� ��,�,�� = m�R̂��,�,���m�� ,

and define a 2M �2M matrix R�M��� ,� ,��
= �Rm,m�

�M� �� ,� ,���m,m���−1 , 1�M. By definition of tensor prod-
ucts �28�,

Rm,m�
�M� ��,�,�� = �

n=1

M

Rmn/2,mn�/2
�1/2� ��,�,��

= e−i��m�/2−i��m��/2�
n=1

M

rmn/2,mn�/2
�1/2� ��� ,

where r�1/2����= �r
m/2,m�/2
�1/2� �m,m���−1,1� is given by Eq. �A1� in

Appendix A. This gives a 2M-dimensional tensor-product
representation of the rotation group. Define the shift matrix
in the k-space by Sm,m�

�M� �k�=Rm,m�
�M� �−2k ,0 ,0�=eik�m��mm�, and

set

V�M��k� = S�M��k�R�M���,�,�� = R�M��� − 2k,�,�� . �19�

Following the general theory of Brun et al. �18�, the wave
function in the k-space at time t of the one-dimensional
quantum walk associated with the above tensor-product rep-
resentation of SO�3� will be given by

�̂�M��k,t� = �V�M��k��t�0
�M�, t = 0,1,2, . . . , �20�

where the initial state is given by the 2M-component qudit

�0
�M� = �

n=1

M �Qn
+

Qn
− �, Qn

+,Qn
− � C �21�

with an appropriate normalization condition. The real-space
wave function is then given by its Fourier transformation

��M��x,t� = �
−�

� dk

2�
�̂�M��k,t�eikx. �22�

Let Yt
�M�, t=0,1 ,2 , . . ., be the position of the walker at

time t of this tensor-product model. The probability distribu-
tion function is defined by

P�M��x,t� � Prob�Yt
�M� = x� = ���M��x,t��†��M��x,t� .

�23�

The initial position of this quantum walk is the origin, Y0
�M�

=0, and the walker has the initial qudit �21�.

B. Reduction of quantum-walk models

Irreducible representations of the rotation group are given
in the spaces spanned by �j ,m�, j=0,1 /2 ,1 ,3 /2 , . . .,
m=−j ,−j+1, . . . , j−1, j �28,32�. The two kinds of bases
��m�� and ��j ,m��j� are related through

�m� = �
j

�
�j=1

dj

�
mj

�j,mj��jK�j,mj�
� j,m �24�

with
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K�j,mj�� j,m
�M� = �jj,mj�m� , �25�

where dj is the multiplicity of the �2j+1�-dimensional irre-
ducible representations included in the 2M-dimensional
tensor-product representation and for each j an index � j runs
from 1 to dj. Remark that � jdj�2j+1�=2M. Define the
2M-dimensional matrix K�M�= �K�j , mj�� j,m

�M� �, which is an or-

thogonal matrix; �K�M��−1=tK�M�.
Then we see

K�M�R�M��� − 2k,�,���K�M��−1

= �
j,�j

R�j,�j��� − 2k,�,��

= �
j

�R�j,1��� − 2k,�,�� � ¯ � R�j,dj��� − 2k,�,��� ,

�26�

where R�j,�j� ,�=1,2 , . . . ,dj, are dj copies of the
�2j+1�-dimensional irreducible representation of the rotation
group explained in Sec. II. That is, R�M���−2k ,� ,�� can be
block-diagonalized into a direct sum of rotation matrices.
Note that direct sums in Eq. �26� and equations below are
taken only over j’s such that K�j , mj�� j,m

�M�
�0. �See the ex-

amples in the following section.� For Eq. �19� it implies that

�V�M��k��t = �K�M��−1
�
j,�j

�V�j,�j��k��tK�M�, �27�

where V�j,�j��k� is the � jth copy of Eq. �13�.
Let

K�M��0
�M� = �

j,�j

�0
�j,�j�, �28�

and define

p�j,�j� = ��0
�j,�j��†�0

�j,�j�. �29�

Then it is easy to prove that the probability distribution func-
tion �23� is decomposed as

P�M��x,t� = �
j

�
�j=1

dj

p�j,�j�P�j,�j��x,t� , �30�

where P�j,�j��x , t� is the probability distribution function of
our quantum-walk model introduced in Sec. III, whose initial
�2j+1�-component qudit is given by

�0
�j,�j� =

1
�p�j,�j�

�0
�j,�j�. �31�

By this formula, the probability laws of quantum walks of
the tensor-product models are completely determined by
those of the models studied in the present paper.

C. Examples

1. M=2 case

We set the 22=4 states ���m1 ,m2����m1,m2���−1 , 1�2 in the
order ��1,1��, ��1,−1��, ��−1,1��, ��−1,−1��. Then we have

Rm,m�
�2� �� ,� ,��=e−i��m1+m2�/2−i��m1�+m2��/2rm,m�

�2� with

r�2� = �rm,m�
�2� � =	

c2 − cs − cs s2

cs c2 − s2 − cs

cs − s2 c2 − cs

s2 cs cs c2

 . �32�

The shift matrix is given in the k-space by

S�2��k� = R�2��− 2k,0,0� =	
e2ik 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e−2ik

 . �33�

From the above four states, ��j ,m� : j=1,0� are obtained by
the highest weight construction �see, for example, �28�� and
we find the transformation matrix K�2� as

K�2� = �j,m��m1,m2��� =	
1 0 0 0

0 �1/2 �1/2 0

0 0 0 1

0 �1/2 − �1/2 0

 .

�34�

It is easy to confirm that

K�2�r�2�����K�2��−1 = 	
c2 − �2cs s2 0

�2cs 2c2 − 1 − �2cs 0

s2 �2cs c2 0

0 0 0 1



= r�1���� � 1, �35�

where r�1���� is given by Eq. �A1� in Appendix A. This im-
plies K�2�V�2��k��K�2��−1=V�1��k� � 1. This decomposition will
be symbolically denoted as

2 � 2 = 3 � 1. �36�

2. M=3 case

We set the 23=8 states ���m1 ,m2 ,m3����m1,m2,m3���−1 , 1�3 in
the order ��1,1,1��, ��1,1 ,−1��, ��1,−1,1��, ��1,−1,−1��,
��−1,1 ,1��, ��−1,1 ,−1��, ��−1,−1,1��, ��−1,−1,−1��. Then

we have Rm,m�
�3� �� ,� .��=e−i��m1+m2+m3�/2−i��m1�+m2�+m3��/2rm,m�

�3�

with
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r�3� = �rm,m�
�3� � =	

c3 − c2s − c2s cs2 − c2s cs2 cs2 − s3

c2s c3 − cs2 − c2s − cs2 − c2s s3 cs2

c2s − cs2 c3 − c2s − cs2 s3 − c2s cs2

cs2 c2s c2s c3 − s3 − cs2 − cs2 − c2s

c2s − cs2 − cs2 s3 c3 − c2s − c2s cs2

cs2 c2s − s3 − cs2 c2s c3 − cs2 − c2s

cs2 − s3 c2s − cs2 c2s − cs2 c3 − c2s

s3 cs2 cs2 c2s cs2 c2s c2s c3


 . �37�

The shift matrix is given in the k-space as

S�3��k� = R�3��− 2k,0,0�

=	
e3ik

eik

eik

e−ik

eik

e−ik

e−ik

e−3ik


 .

�38�

By the highest weight construction, we find in this case that

we obtain a pair of two-dimensional subspaces in addition to
one four-dimensional subspace in the decomposition;

2 � 2 � 2 = 4 � 2 � 2. �39�

That is, the multiplicities are

d3/2 = 1 and d1/2 = 2.

The orthogonal matrix is determined as

K�3� =	
1 0 0 0 0 0 0 0

0 �1/3 �1/3 0 �1/3 0 0 0

0 0 0 �1/3 0 �1/3 �1/3 0

0 0 0 0 0 0 0 1

0 �1/6 − �2/3 0 �1/6 0 0 0

0 0 0 − �1/6 0 �2/3 − �1/6 0

0 − �1/2 0 0 �1/2 0 0 0

0 0 0 − �1/2 0 0 �1/2 0


 . �40�

We can see then
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K�3�r�3�����K�3��−1 =	
c3 − �3c2s �3cs2 − s3 0 0 0 0

�3c2s c�c2 − 2s2� − s�2c2 − s2� �3cs2 0 0 0 0

�3cs2 s�2c2 − s2� c�c2 − 2s2� − �3c2s 0 0 0 0

s3 �3cs2 �3c2s c3 0 0 0 0

0 0 0 0 c − s 0 0

0 0 0 0 s c 0 0

0 0 0 0 0 0 c − s

0 0 0 0 0 0 s c


 = r�3/2���� � r�1/2,1���� � r�1/2,2���� ,

�41�

where r�3/2���� is Eq. �A3� and both of r�1/2,1���� and
r�1/2,2���� are identified with Eq. �A1� in Appendix A. This
implies

K�3�V�3��k��K�3��−1 = V�3/2��k� � V�1/2,1��k� � V�1/2,2��k� .

�42�

V. LIMIT DISTRIBUTIONS OF QUANTUM WALKERS

A. Decomposition of time-evolution matrix

A key lemma for the following analysis of the quantum-
walk models is the fact that the time-evolution matrix
V�j��k� defined by Eq. �13� is decomposed into the three ro-
tation matrices R�j�’s of the form

V�j��k� = R�j����k�,��k�,0�R�j��− p�k�,0,0�

��R�j����k�,��k�,0��†, �43�

where ��k�, ��k�, and p�k� are related with the Euler angles
�, �, and � and the wave number k by

1

2
��� − 2k� − �� = ��k� +

�

2
,

tan
1

2
��� − 2k� + �� = − tan

p�k�
2

cos ��k� ,

sin
�

2
= sin

p�k�
2

sin ��k� . �44�

We give the proof of this formula in Appendix B.
The formula �43� means that the time-evolution matrix

V�j��k� can be diagonalized to R�j��−p�k� ,0 ,0� by a unitary
transformation given by R�j����k� ,��k� ,0�. Indeed
R�j��−p�k� ,0 ,0� is a diagonal matrix R�j��−p�k� ,0 ,0�
=diag�eijp�k� ,ei�j−1�p�k� , . . . ,e−ijp�k�� and, by the unitarity of
R�j�, �R�j��†= �R�j��−1, Eq. �12� is written as

�̂�j��k,t� = R�j����k�,��k�,0�

�	
eitjp�k�

eit�j−1�p�k�

�

e−itjp�k�



��R�j����k�,��k�,0��†�0
�j�

= �
m=−j

j

eitmp�k�vm
�j��k�Cm

�j��k� , �45�

where vm
�j��k� is the mth column vector in the matrix

R�j����k� ,��k� ,0�,

vm
�j��k� =	

Rjm
�j����k�,��k�,0�

Rj−1m
�j� ���k�,��k�,0�

¯

R−jm
�j� ���k�,��k�,0�



and

Cm
�j��k� � �vm

�j��k��†�0
�j� = �

m�=−j

j

Rm�m
�j� ���k�,��k�,0�qm�,

�46�

where z̄ denotes the complex conjugate of a complex number
z.

The expansion �45� gives

�i
d

dk
�r

�̂�j��k,t� = �
m=−j

j �− m
dp�k�

dk
�r

eitmp�k�vm
�j��k�Cm

�j��k�tr

+ O�tr−1� .

Since R�j� is unitary, its column vectors make a set of ortho-
normal vectors, �vm

�j��k��†v
m�
�j� �k�=�mm�. Then we have

WIGNER FORMULA OF ROTATION MATRICES AND … PHYSICAL REVIEW A 76, 012332 �2007�

012332-7



��̂�j��k,t��†�i
d

dk
�r

�̂�j��k,t� = �
m=−j

j �− m
dp�k�

dk
�r

�Cm
�j��k��2tr

+ O�tr−1� ,

and thus Eq. �17� gives the following expression for mo-
ments of pseudovelocity Xt

�j� / t in the long-time limit �11,25�:

lim
t→	
��Xt

�j�

t
�r� = �

m:0�m�j
�

−�

� dk

2�
��− 1�r�Cm

�j��k��2 + �C−m
�j� �k��2�

��m
dp�k�

dk
�r

, �47�

r=1,2 ,3 , . . ., where the summation is taken over m
=1/2 ,3 /2 , . . . , j, if j is half of an odd number, and m
=1,2 , . . . , j, if j is a positive integer. Here it should be noted
that, when j is a positive integer, m=0 mode exists, but it
does not contribute to any moment of order r=1,2 ,3 , . . . in
Eq. �47�. The m=0 mode comes from the fact that the walker
can stay at the same position in a step, when �2j+1� is odd,
and its contribution to the limit distribution will be described
by a point mass at the origin �see Sec. V C�.

B. Planar orbits in parameter space and integrals

The equations �44� define a one-parameter family �with
parameter k� of transformations from the Euler angles
�� ,� ,�� to �p ,� ,��. More explicitly, we can find the follow-
ing equations from Eq. �44� �see Appendix B�:

cos
p�k�

2
= cos

�

2
cos

1

2
�� + � − 2k� , �48�

sin
p�k�

2
= �1 − cos2��/2�cos2��� + � − 2k�/2� , �49�

cos ��k� = −
cos��/2�sin��� + � − 2k�/2�

�1 − cos2��/2�cos2��� + � − 2k�/2�
, �50�

sin ��k� =
sin��/2�

�1 − cos2��/2�cos2��� + � − 2k�/2�
, �51�

��k� =
1

2
�� − � − 2k − �� . �52�

Following the argument given in �25�, we consider a vector
p�k�= �p1�k� , p2�k� , p3�k�� in the three-dimensional parameter
space defined by

p1�k� = p�k�sin ��k�cos ��k� ,

p2�k� = p�k�sin ��k�sin ��k� ,

p3�k� = p�k�cos ��k� . �53�

Let

ê1 = �− sin �,− cos �,0� ,

ê2 = �sin
�

2
cos �,− sin

�

2
sin �,− cos

�

2
� ,

ê3 = �cos
�

2
cos �,− cos

�

2
sin �,sin

�

2
� . �54�

Using Eqs. �48�–�52�, it is easy to confirm the fact that

p�k� � ê3 for all k � �− �,�� ,

which implies that p�k� draws an orbit on a plane including
the origin, whose normal vector is ê3 in the parameter space.
On this orbital plane, we define the angle � by cos �
= p̂�k� · ê1, where p̂�k�=p�k� / p�k�. Then we have the relations

cos � =
sin��/2�cos��� + � − 2k�/2�

�1 − cos2��/2�cos2��� + � − 2k�/2�
, �55�

sin � =
sin��� + � − 2k�/2�

�1 − cos2��/2�cos2��� + � − 2k�/2�
. �56�

Comparing Eq. �55� with Eqs. �48� and �49�, the equation of
the orbit on the plane is determined of essentially the same
form as reported in �25�,

tan
p�k�

2
= tan

�

2

1

cos �
. �57�

As pointed out by �25�, the integral with respect to the
wave number k in Eq. �47� is mapped to the curvilinear in-
tegration along the orbit with respect to the angle � through
the relations �55� and �56�, or their inverted forms

cos
1

2
�� + � − 2k� =

cos �

�1 − cos2��/2�sin2 �
, �58�

sin
1

2
�� + � − 2k� =

sin � sin��/2�
�1 − cos2��/2�sin2 �

. �59�

The Jacobian associated with the map k�� is obtained as

J � � dk

d�
� =

sin��/2�
1 − cos2��/2�sin2 �

. �60�

From Eq. �49�, we have

p�k� = 2 arccos�cos
�

2
cos

1

2
�� + � − 2k�� ,

and then

dp�k�
dk

= − 2 cos
�

2
sin � , �61�

where the formula �d /dx�arccos x= �1/�1−x2 has been
used. The long-time limit �47� of moments of pseudovelocity
is now expressed as

lim
t→	
��Xt

�j�

t
�r� = �

m:0�m�j

Im
�j��r�, r = 1,2,3, . . . , �62�

where
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Im
�j��r� = �

−�

� d�

2�

sin��/2�
1 − cos2��/2�sin2 �

��Ĉm
�j�����2

+ �− 1�r�Ĉ−m
�j� ����2��2m cos

�

2
sin ��r

�63�

with Ĉ±m
�j� ����C±m

�j� �k����.

C. Superposition of scaled Konno’s density functions

In each integral Im
�j��r�, we change the variable of integral

from � to y by

y = 2m cos
�

2
sin � . �64�

If we assume that by this change of variable Ĉm
�j���� is re-

placed by cm
�j��y�, the integral is written as

Im
�j��r� =

1

2m
�

−	

	

dyyr
� y

2m
;cos

�

2
�

���cm
�j��y��2 + �− 1�r�c−m

�j� �y��2� . �65�

Here 
�x ;a� is given by Eq. �2�, which is the density func-
tion first introduced by Konno to describe the limit distribu-
tions of the two-component one-dimensional quantum walks
in his weak limit-theorem �9,10�. As a function of y,
�cm

�j��y��2 is separated into an even-function part and an odd-
function part. For positive values of m, let Meven

�j,m��y /2m�
=even-function part of �cm

�j��y��2+ �c−m
�j� �y��2 and

Modd
�j,m��y /2m�=odd-function part of �cm

�j��y��2− �c−m
�j� �y��2.

Since 
�x ;a� is an even function of x, Eq. �65� gives

Im
�j��2n� =

1

2m
�

−	

	

dyy2n
� y

2m
;cos

�

2
�Meven

�j,m�� y

2m
� ,

Im
�j��2n − 1� =

1

2m
�

−	

	

dyy2n−1
� y

2m
;cos

�

2
�Modd

�j,m�� y

2m
� ,

�66�

for n=1,2 ,3 , . . .. Then Eq. �62� implies that

lim
t→	
��Xt

�j�

t
�r� = �

−	

	

dyyr �
m:0�m�j

1

2m

� y

2m
;cos

�

2
�

�M�j,m�� y

2m
� , �67�

for r=1,2 ,3 , . . ., where

M�j,m��x� = Meven
�j,m��x� + Modd

�j,m��x� . �68�

When j is a positive integer �i.e., �2j+1� is odd�, the
integral

J�j� = �
−	

	

dy �
m:0�m�j

1

2m

� y

2m
;cos

�

2
�M�j,m�� y

2m
�

�69�

is generally less than one, since the contribution from the
m=0 mode is not included in the summation. The difference

��j� = 1 − J�j� �70�

gives the weight of a point mass at y=0 in the distribution.
The result is summarized as follows. The long-time limit

of the pseudovelocity of the �2j+1�-component quantum
walk is described by the probability measure, which consists
of the summation of appropriately scaled Konno’s density
functions with weight functions M�j,m��y /2m�, and a point
mass at the origin with weight ��j�, if the number of compo-
nents �2j+1� is odd, that is

lim
t→	
��Xt

�j�

t
�r� = �

−	

	

dyyr��j��y�, r = 0,1,2, . . . , �71�

with

��j��y� = �
m:0�m�j

1

2m

� y

2m
;cos

�

2
�M�j,m�� y

2m
�

+ 1��2j+1� is odd��
�j���y� . �72�

D. Polynomials M„j,m…

„x… representing parameter
and initial-qudit dependence

Using the formulas given in Appendix C and the matrices
r�j� in Appendix A, the weights M�j,m��x� and ��j� in the limit
distribution �72� are explicitly determined as follows for j
=1/2, 1, and 3/2, 0�m� j. Set

� = tan
�

2
. �73�

For a complex number z, Re�z� denotes the real part of z.

1. j=1/2 case (two-component model)

M�1/2,1/2��x� = 1 + M1
�1/2,1/2�x , �74�

with

M1
�1/2,1/2� = − ��q1/2�2 − �q−1/2�2� + 2� Re�q1/2q̄−1/2e−i�� .

�75�

When M1
�1/2,1/2�=0 �M1

�1/2,1/2��0�, the probability density
function of limit distribution ��1/2��y� is symmetric �asym-
metric� �9,10,25�.

2. j=1 case (three-component model)

M�1,1��x� = M0
�1,1� + M1

�1,1�x + M2
�1,1�x2, �76�

with

M0
�1,1� =

1

2
��q1�2 + 2�q0�2 + �q−1�2� − Re�q1q̄−1e−2i�� ,
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M1
�1,1� = − ��q1�2 − �q−1�2� + �2� Re��q1q̄0 + q0q̄−1�e−i�� ,

M2
�1,1� =

1

2
��q1�2 − 2�q0�2 + �q−1�2� − �2� Re��q1q̄0

− q0q̄−1�e−i�� + �1 + 2�2�Re�q1q̄−1e−2i�� , �77�

and

��1� = 1 − �M0
�1,1� + �1 − sin

�

2
�M2

�1,1�� . �78�

The condition that the probability density function of limit
distribution ��1��y� is symmetric is given by M1

�1,1�=0. Gen-
erally the point mass at the origin appears with the weight
��1� in the limit distribution.

3. j=3/2 case (four-component model)

M�3/2,3/2��x� = M0
�3/2,3/2� + M1

�3/2,3/2�x + M2
�3/2,3/2�x2

+ M3
�3/2,3/2�x3 �79�

and

M�3/2,1/2��x� = M0
�3/2,1/2� + M1

�3/2,1/2�x + M2
�3/2,1/2�x2

+ M3
�3/2,1/2�x3, �80�

with

M0
�3/2,3/2� =

1

4
��q3/2�2 + 3�q1/2�2 + 3�q−1/2�2 + �q−3/2�2�

−
�3

2
Re��q3/2q̄−1/2 + q1/2q̄−3/2�e−2i�� ,

M1
�3/2,3/2� = −

3

4
��q3/2�2 + �q1/2�2 − �q−1/2�2 − �q−3/2�2�

−
3

2
� Re�q3/2q̄−3/2e−3i� − q1/2q̄−1/2e−i��

+
�3

2
� Re��q3/2q̄1/2 + q−1/2q̄−3/2�e−i��

+
�3

2
Re��q3/2q̄−1/2 − q1/2q̄−3/2�e−2i�� ,

M2
�3/2,3/2� =

3

4
��q3/2�2 − �q1/2�2 − �q−1/2�2 + �q−3/2�2�

− �3� Re��q3/2q̄1/2 − q−1/2q̄−3/2�e−i��

+
�3

2
�1 + 2�2�Re��q3/2q̄−1/2 + q1/2q̄−3/2�e−2i�� ,

M3
�3/2,3/2� = −

1

4
��q3/2�2 − 3�q1/2�2 + 3�q−1/2�2 − �q−3/2�2�

+
1

2
��3 + 4�2�Re�q3/2q̄−3/2e−3i��

−
3

2
� Re�q1/2q̄−1/2e−i�� +

�3

2
� Re��q3/2q̄1/2

+ q−1/2q̄−3/2�e−i��

−
�3

2
�1 + 2�2�Re��q3/2q̄−1/2 − q1/2q̄−3/2�e−2i�� ,

�81�

and with

M0
�3/2,1/2� =

1

4
�3�q3/2�2 + �q1/2�2 + �q−1/2�2 + 3�q−3/2�2�

+
�3

2
Re��q3/2q̄−1/2 + q1/2q̄−3/2�e−2i�� ,

M1
�3/2,1/2� = −

1

4
�3�q3/2�2 − 5�q1/2�2 + 5�q−1/2�2 − 3�q−3/2�2�

+
9

2
� Re�q3/2q̄−3/2e−3i�� −

1

2
� Re�q1/2q̄−1/2e−i��

+
�3

2
� Re��q3/2q̄1/2 + q−1/2q̄−3/2�e−i��

−
3�3

2
Re��q3/2q̄−1/2 − q1/2q̄−3/2�e−2i�� ,

M2
�3/2,1/2� = −

3

4
��q3/2�2 − �q1/2�2 − �q−1/2�2 + �q−3/2�2�

+ �3� Re��q3/2q̄1/2 − q−1/2q̄−3/2�e−i��

−
�3

2
�1 + 2�2�Re��q3/2q̄−1/2 + q1/2q̄−3/2�e−2i�� ,

M3
�3/2,1/2� =

3

4
��q3/2�2 − 3�q1/2�2 + 3�q−1/2�2 − �q−3/2�2�

−
3

2
��3 + 4�2�Re�q3/2q̄−3/2e−3i��

+
9

2
� Re�q1/2q̄−1/2e−i��

−
3�3

2
� Re��q3/2q̄1/2 + q−1/2q̄−3/2�e−i��

+
3�3

2
�1 + 2�2�Re��q3/2q̄−1/2 − q1/2q̄−3/2�e−2i�� .

�82�

If and only if M1
�3/2,3/2�=M3

�3/2,3/2�=0 and M1
�3/2,1/2�

MIYAZAKI, KATORI, AND KONNO PHYSICAL REVIEW A 76, 012332 �2007�

012332-10



=M3
�3/2,1/2�=0, the probability density function of limit dis-

tribution ��3/2��y� is symmetric.
These results imply that M�j,m��x� are polynomials of x of

degree 2j and the coefficients Mk
�j,m�, k=0,1 , . . . ,2j depend

on � and � through the functions �=tan�� /2� and e−i�, but
they do not on �. It should be noted that their dependence on
initial qudit �1� is complicated. In other words, the limit dis-
tribution of pseudovelocity of quantum walk is very sensitive
to changes of initial qudit.

VI. COMPARISON WITH COMPUTER SIMULATIONS
AND CONCLUDING REMARKS

In order to demonstrate the validity of the above results,
here we show a comparison with computer simulation re-
sults. In the following figures, Figs. 2–4, the scattering thin
lines indicate the density of distribution of Xt / t at time step
t=100 obtained by computer simulation and the thick lines
the probability densities of limit distributions ��j��y� given in
the previous section. Note that if we integrate the density
over an interval �a ,b�, then we obtain the probability that the
value of Xt / t is in �a ,b�.

A. Two-component model

The result �74� with �75� is completely identified with the
previous results �9,10,25�. Here we put �� ,� ,��= �0,
−3� /2 ,��. Then we have

R�1/2� =
i

�2
�1 1

1 − 1
� , �83�

which is the Hadamard matrix multiplied by i. �Remark that
the factor i is irrelevant for limit distribution, but by this

factor R�1/2� is in SU�2�, see �25�.� When we choose the ini-
tial qubit as t�0= �1+ i ,1− i� /2, the limit distribution of
pseudovelocity is symmetric as shown by Fig. 2�a�, but when
we choose t�0= �1+ i ,1+ i� /2, only changing the sign of the
imaginary part of the second component, the limit distribu-
tion becomes asymmetric as shown by Fig. 2�b�. When
�� ,� ,��= �0,−3� /2 ,��, the former initial qubit satisfies the
condition M1

�1/2,1/2�=0, but the latter does not, where
M1

�1/2,1/2� is given by Eq. �75�. The shape of probability den-
sity function in limit distribution is very sensitive to changes
of initial qubit.

B. Three-component model

If we set �� ,� ,��= �0,arccos�−1/3� ,��, the three-
component quantum coin will be

R�1� =
1

3	− 1 − 2 − 2

− 2 − 1 2

− 2 2 − 1

 . �84�

Remark that it is similar to the Grover matrix �12�, but it is
not the same. Figure 3 shows the comparison of simulation
results and limit distributions for �a� t�0= �1− i ,1+ i ,1
− i� /�6, which gives symmetric distribution, and for �b� t�0
= �1− i ,1− i ,1− i� /�6, which gives asymmetric distribution,
respectively. It is readily checked that the case �a� satisfies
the condition M1

�1,1�=0 for symmetric distribution. In the
three-component model, Dirac’s delta-function-type peak at
the origin is usually observed in simulation.

C. Four-component model

We set �� ,� ,��= �0,2� /3 ,�� for the four-component
model, which corresponds to choosing the quantum coin as

R�3/2� =
i

8	
1 3 3�3 3�3

3 5 �3 − 3�3

3�3 �3 − 5 3

3�3 − 3�3 3 − 1

 . �85�

If we assume the initial qudit as
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FIG. 3. �Color online� Comparison between simulation results
and the probability densities of limit distributions for the three-
component model. �a� Symmetric and �b� asymmetric cases. The
perpendicular thick lines at the origin indicate Dirac’s delta
functions.
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FIG. 4. �Color online� Comparison between simulation results
and the probability densities of limit distributions for the four-
component model. �a� Symmetric and �b� asymmetric cases.
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FIG. 2. �Color online� Comparison between simulation results
and the probability densities of limit distributions for the two-
component model. �a� Symmetric and �b� asymmetric cases.
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�0 =
1

2�5	
1 + 3i

0

0

− 3 + i

 and �0 =

1

2�5	
1 + 3i

0

0

− 3 − i

 , �86�

the distributions are determined as shown in Figs. 4�a� and
4�b�, respectively.

We observe oscillatory behavior of density functions of
Xt / t in computer simulations. In general, as the time step t
increases, the frequency of oscillation becomes higher; but
the convergence of any moments given by Eq. �71� means
that, if we smear out the oscillatory behavior, the averaged
lines of density functions will be well-described by those of
the limit distributions �72�, which is the fact demonstrated by
the above figures.

Now we discuss relations between our models and other
multicomponent models and possible future problems. Inui
and Konno �33� and Inui et al. �34� introduced a one-
dimensional three-component quantum walk and showed
that a kind of localization phenomenon occurs in their model
by calculating the long-time distribution of the walker’s po-
sition Xt. They claimed that such a localization phenomenon
results in a point mass at the origin, represented by Dirac’s
delta function, in the limit distribution of Xt / t. Though their
model associated with the Grover matrix does not belong to
our family of models, the structure of probability density
function in limit distribution obtained in our three-
component model �j=1 case� �72� with j=m=1 and with Eq.
�76� is very similar to the limit density function of Xt / t,
given by Eq. �16� in �34�. Then the present work suggests
that such a localization phenomenon is universal for the
models, in which there is a positive probability for the
walker to stay at the same position in each step. Further
study of localization phenomena in quantum-walk models
will be an interesting future problem. The relation between
the present models and the tensor-product models of Brun et
al. �18� was already discussed in Sec. IV. The similarity be-
tween the density functions of walkers plotted in Fig. 1 in
their paper and ours shown above will be explained by re-
ducibility of tensor-product models. As demonstrated in Sec.
IV C, their 22-dimensional model will include our three-
component model and their 23-dimensional model includes
our four-component one, and thus the density function
shown by Fig. 1�b� �Fig. 1�c�� of Brun et al. �18� has the
same structure with Fig.3�b� �Fig. 4�b�� in the present paper.
Venegas-Andraca et al. �30� also reported quantum-walk
models with entangle coins, where a variety of distributions
of the walker’s position with multipeak zones are plotted in
figures. They constructed quantum coins for multicomponent
qudits by also considering tensor products of the basic two-
component quantum coins. Systematic classifications of mul-
ticomponent quantum-walk models and patterns of their
limit distributions will be an important future problem. In
the present paper, we gave the explicit expressions of
M�j,m��x� for j=1/2, 1, and 3/2. Here we gave only key
formulas in Appendix C for calculation of them, but the
present result implies that M�j,m��x� are generally given by
polynomials. We hope that further study of M�j,m� is a prom-

ising subject in the field of quantum walks. As reported in
�11,17,19,21,30,35�, multicomponent models have been stud-
ied to simulate quantum walks on the plane, in the higher-
dimensional lattices Zd, or on general graphs. The present
work suggests that the group-theoretical investigation will be
useful to perform systematic study of such extended models
of quantum walks and quantum processes.
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APPENDIX A: MATRICES r„j…„�… FOR j=1/2 ,1 ,3 /2

The explicit expressions of r�j���� are readily derived
from the Wigner formula �7� as follows for j=1/2 ,1 ,3 /2.
Let c=cos�� /2� ,s=sin�� /2�. Then

r�1/2���� = �c − s

s c
� , �A1�

r�1���� = 	 c2 − �2cs s2

�2cs 2c2 − 1 − �2cs

s2 �2cs c2 
 , �A2�

r�3/2���� =	
c3 − �3c2s �3cs2 − s3

�3c2s − 2cs2 + c3 s3 − 2c2s �3cs2

�3cs2 − s3 + 2c2s − 2cs2 + c3 − �3c2s

s3 �3cs2 �3c2s c3

 .

�A3�

APPENDIX B: PROOF OF EQ. (43) WITH EQ. (44)

By Eq. �13�, it is enough to prove the equality

R�j���,�,�� = R�j���,�,0�R�j��− p,0,0��R�j���,�,0��†

�B1�

with relations

1

2
�� − �� = � +

�

2
, tan

1

2
�� + �� = − tan

p

2
cos � ,

�B2�

sin
�

2
= sin

p

2
sin � .

The equality �B1� is a matrix representation of the equality
which will hold among the rotations
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R̂��,�,�� = R̂��,�,0�R̂�− p,0,0��R̂��,�,0��†. �B3�

Since rotation matrices defined by Eq. �5� with j
=1/2 ,1 ,3 /2 , . . . are faithful representations of rotations, it
may be enough to prove the equality �B1� for the simplest
case, j=1/2, since it implies Eq. �B3�. By direct calculation,
we have

R�1/2���,�,0�R�1/2��− p,0,0��R�1/2���,�,0��†

= �e−i�/2 cos��/2� − e−i�/2 sin��/2�
ei�/2 sin��/2� ei�/2 cos��/2�

��eip/2 0

0 e−ip/2 �
�� ei�/2 cos��/2� e−i�/2 sin��/2�

− ei�/2 sin��/2� e−i�/2 cos��/2�
�

= �cos�p/2� + i sin�p/2�cos � i sin�p/2�sin �e−i�

i sin�p/2�sin �ei� cos�p/2� − i sin�p/2�cos �
� .

�B4�

Comparing it with

R�1/2���,�,�� = �e−i��+��/2 cos��/2� − e−i��−��/2 sin��/2�
ei��−��/2 sin��/2� ei��+��/2 cos��/2�

� ,

we have the equations

cos
p

2
= cos

�

2
cos

1

2
�� + �� ,

sin
p

2
cos � = − cos

�

2
sin

1

2
�� + �� ,

sin
p

2
sin � sin � = − sin

�

2
cos

1

2
�� − �� , �B5�

sin
p

2
sin � cos � = sin

�

2
sin

1

2
�� − �� ,

from which Eq. �B2� is derived.

APPENDIX C: FORMULAS

Inserting Eq. �6� with Eq. �7� into Eq. �46� and taking the
square of the complex variable, we have the expression

�Cm
�j��k��2 = �

m1=−j

j

�
m2=−j

j

qm1
q̄m2

ei�m1−m2���k�

� �
�1

�
�2

��j,m1,m,�1���j,m2,m,�2�

� �cos
��k�

2
�4j+m1+m2−2m−2�1−2�2

��sin
��k�

2
�2�1+2�2+2m−m1−m2

. �C1�

From Eqs. �50�–�52�, the following relations are derived:

cos ��k� = − cos
�

2
sin � ,

sin ��k�ei��k� = �sin
�

2
sin � − i cos ��e−i�. �C2�

Then, through the change of variable �64�, we have

cos2 ��k�
2

=
1

2
�1 −

y

2m
� ,

sin2 ��k�
2

=
1

2
�1 +

y

2m
� ,

sin
��k�

2
cos

��k�
2

ei��k�

=
1

2
� y

2m
tan

�

2
− i�1 − � y

2m
�2

sec2 �

2
�e−i�. �C3�

By Eq. �C3� we can perform the transformations

�Cm
�j��k��2� �Ĉm

�j�����2� �cm
�j��y��2, and M�j,m��y /2m�’s are ob-

tained.
In order to calculate Eq. �78�, we have used the following

integral formulas:

�
0

2 cos��/2� 1
�cos2��/2� − �y/2�2

dy = � ,

�
0

2 cos��/2� 1

�1 − �y/2�2��cos2��/2� − �y/2�2
dy =

�

sin��/2�
.

�C4�
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