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In the forest fire model of Drossel and Schwabl, lightning with probability f, deterministic
fire spreading, and growth of tree with probability ¢ are proceeding in the same time scale.
In such a parallel updated algorithm, system shows criticality only in the double limit g — 0
and f/q — 0, which we call the Drossel-Schwabl limit (DS limit). A modified model of forest
fire is proposed, in which the lightning and growing are prohibited during fire spreading and
they can proceed only after any fire has ceased: time scales are separated on algorithm. We
define the cluster of green-tree sites and study the percolation transitions. For small values
of f and f/q, oscillation phases with period n are observed at least n = 2 and 3, in which
the percolation probability of green-tree sites has positive value only at every n-th step. An
envelope of a series of phase boundaries of oscillation phases with period n = 2,3,4,--- in
the (f,q)-phase diagram will give a physical realization of DS limit.
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1. INTRODUCTION

Large scale disturbances, such as, fires, typhoons,
avalanches and so on, play important roles in the
formation of spatial structures of forests and have
been studied by many ecologists [1, 2]. In particular
forest fires have been studied for a long time. For
example, extensive set of time series data are re-
ported on forest fires in the boreal forest regions of
Europe and North America, and simulation models
are proposed [3]. On the other hand, from the view
point of statistical physics, criticality observed in
the real forest data is very interesting [4, 5, 6, 7, 8].
For example, the cluster-size distribution of canopy-
gap is well described by power-law distribution in
the forest on Barro Colorado Island, Panama [9, 10},
and in Ogawa forest reserve, Japan [11]. Forest
dynamics will provide interesting examples of self-
organized criticality [12, 13].

2. THE DROSSEL-SCHWABL LIMIT

In 1990 Bak, Chen and Tang introduced a sim-
ple forest fire model [14]. In 1992 this model was
modified by Drossel and Schwabl and a stochastic
cellular automaton model was introduced [15]. In
the present paper, we call this model the Drossel-
Schwabl model or DS model for short. DS model is
defined on a square lattice. Each site is occupied by
a green tree, a burning tree, or is empty. During one
time step, the system is parallel updated according
to the following rules.

(1) A green tree without any burning nearest
neighbors becomes a burning tree sponta-
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neously with probability f (lightning).

(2) A green tree becomes a burning tree if at least
one of its nearest neighbors is burning (fire
spreading).

(3) A burning tree becomes an empty site.

(4) An empty site becomes a green tree with prob-
ability g (growing).

Periodic boundary conditions are assumed, and
the initial configuration is a random configuration
which consists of green trees and empty sites.

The system shows a critical state only in the dou-
ble limit ¢ — 0 and f/q — 0. In this limit the
cluster-size distribution of green-tree sites follows a

‘power law. We call this double limit the Drossel-

Schwabl limit (DS limit).

DS limit represents a double separation of time
scales: The time scale in which a green-tree clus-
ter burns down is much shorter than the time scale
in’ which an individual tree grows (¢ — 0) and
the latter time scale is much shorter than the time
period of lightnings which occur at the same site
(f/q = 0). Such separation of time scales is quite
frequent in nature, while the fire tuning of param-
eters to certain values only takes place accidentally
in nature.

3. OUR MODEL

In the present paper, we propose a simple forest
fire model in which elementary processes are the
same as those in DS model, but the algorithm of
procedures is different as explained below. Through
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the comparison of our model with DS model, we dis-
cuss the physical meaning of DS limit in this paper.
We consider a stochastic cellular automaton on
a square lattice, which contains two parameters f
(lightning probability) and q (growth probability of
a tree at an empty site). Each site can be occupied
by a green tree, a burning tree, or be empty. During
one time step, the whole configuration is updated
according to the following rules by turns.

(1) Every green site becomes a burning-tree site
with probability f (lightning).

(2) Every fire spreads to each nearest neighbor
sites. Each fire will continue to spread until
it fails to spread to any unburnt sites.

(3) Every burning site becomes an empty site.

(4) Every empty site becomes a green site with
probability ¢ (growing).

Periodic boundary conditions are assumed, and
the initial configuration is a random configuration
which consists of green trees and empty sites. It
should be noted that during fire spreading, the
lightning and growing are prohibited. They can oc-
cur after any fire has ceased. In DS model we have
to take DS limit to realize the separation of time
scales among lighting, growing and fire spreading.
In our model, however, their time scales are sep-
arated on algorithm. This setting is analogous to
that in the sandpile models [16, 17], in which addi-
tion of particle (local perturbation) is taken place
after any avalanche (spread of topplings) has ceased.

4. PERCOLATION TRANSITION OF GREEN-

TREE SITES

We have studied our model by computer simula-
tion. We regard a sequence of procedures (1) to (4)
as one time step and investigate each configuration
just before lightning (the procedure (1)). The sys-
tem reaches a steady state after about 50 time steps.
Figure 1 shows an example of steady configuration
for f = 0.1, ¢ = 0.57.

We regard the green-tree sites as open sites and
the empty sites as closed sites and consider the
site percolation problem [18] on steady configura-
tions for each values of f and q. Here we consider
the Neuman neighborhood and define open clusters.
When there is-a large cluster across the system, the
system is considered to be the percolation state.
The percolation probability § of green-tree sites is
approximated by [18]

largest cluster size
g Y

8 ~ average of -
age system size

Figure 2 shows the g-dependence of § for f = 0.1.
A percolation transition is observed at a thresh-
old growth-probability ¢. ~ 0.57. By changing the
value of f, we evaluate each ¢. and obtain a phase
diagram. The result is shown in Fig.3(A). The per-
colation transition line is almost parallel to the f
axis.
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Fig. 1: An example of steady state of the present for-
est fire model for f = 0.1, ¢ = 0.57. Green-tree sites are
represented by black dots.
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Flg 2: Order parameter @ (the percolatlon probability of
green-tree sites) versus ¢ for f = 0.1. 9 is approximated
by eq.(1). The data are averaged over 120 time steps after
discarding 50 time steps on a 2000 x 2000 square lattice with
the periodic boundary condition. The threshold value is
estimated as g, ~~ 0.57.
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The reason why g. is approximately independent
of f is the following. If the system is in the per-
colation state, the large fire breaks out even by a
little ignition, and after the large fire breaks out,
almost all sites become empty. Thus the configu-
ration before lightning is determined only by the
growing process with probability g.

When f = 1, the observed percolation transition
in our model is nothing but the well-known site per-
colation transition for the system in which each site
is open (resp. closed) with probability ¢ (resp. 1—g)
independently of each other sites. As we can see in
Fig.3(A), as f — 1, g. becomes the value 0.5927 - - -,
which is the percolation threshold of the site perco-
lation [18].

For large value of f, Our model may be es-
sentially equivalent to the simple site percolation
model. Now we study the phenomena found in the
very small f region.
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Flg 3: (A) The phase diagram of the forest fire model. In
the upper side of the transition line, § > 0. The transition
line is almost parallel to f axis. (B) The phase diagram of
the forest fire model in the region with very small f. There
is the oscillation phase in the region for f < 0.02. The
oscillation(3) phase is the phase in which the system has
positive probability to be in the percolation state once in
every third step

5. OSCILATION PHASES

In the very small f region, we find new phase
and the phases diagram is rather complicated. In
the “oscillation” region in the phase diagram shown
in Fig.3(B), the configuration oscillates between the
percolation state (8 > 0) and the non-percolation
state (6 = 0) every other step.

Figure 4 shows the percolation probability 8 as
a function of ¢ for f = 0.001. The percolation
threshold value is g. ~ 0.25 in this case. Between
g = 0.36 and ¢ = 0.56, 8 is zero at the time steps
=even (resp. odd), while it has rather large values
at t=odd (resp. even). Such oscillations disappear
for g < 0.36 and for ¢ > 0.56.
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Flg. 4: Order parameter 8 (the percolation probability)
versus q for f = 0.001. These are averaged over 120 time
steps after discarding 50 time steps on a 2000 %2000 square
lattice with the periodic boundary condition. The perco-
lation threshold is g, = 0.25 in this case. The oscillation
phase is found between q = 0.36 and ¢ = 0.56.

The mechanism of the oscillation can be ex-
plained as follows. Since ¢ < 0.5927--- (the site-
percolation threshold), the green-tree clusters are
finite. It implies that the fire spreading caused by a
lightning is local. When the ratio f/q is small, light-
ning and burning are very rare to occur compared
to the growing of trees and thus the green tree clus-
ters tend to become larger. For appropriate values
of f and f/q, such situation will be repeated and at
every other step the green-tree clusters have posi-
tive probability to cover the system (i.e. § > 0). If
the system is covered by the green trees, a lightning
causes a global fire spreading even if the lightning
probability f is very small. Then 8 = 0 every other
step, too.

In the region of smaller f, there is another oscilla-
tion phase in which 8 > 0 only at every third step.
The parameter region of such a period-3 phase is
indicated by oscillation(3) in Fig.3(B). We expect
that a series of oscillation phases with longer peri-
ods n > 4 will be observed for much smaller f.
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6. DISCUSSION AND FUTURE PROBLEM

As shown by Fig.5 schematically, a series of phase
boundaries of oscillation phases enables us to draw
an envelope. If we consider the situation in which
the parameters g and f are changed along this enve-
lope to take the ¢ — 0 limit, the system undergoes
successive critical phenomena.

DS limit is given by the double limit, ¢ —+ 0 and
f/qa — 0, in DS model. The envelope shown in Fig.5
for our model will give a physical realization of this
double limit.

Critical phenomena are observed on each phase
boundary of oscillation phase as well as on the usual
percolation transition line in Fig.3(A). For example,
cluster-size distribution of green-tree sites obeys a
power-law. The critical exponents should be care-
fully evaluated for each oscillation phase. Depen-
dence of critical phenomena on the period of oscil-
lation n and comparison with the original DS model
[19] will be challenging future problems.
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Fig. 5: A schematic phase diagram of our forest-fire model.
The bold line is an envelope of a series of phase boundaries
of oscillation phases. DS limit, g — 0 and f/q — 0, will be
realized on this envelope.
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