量子力学3 期末テスト(2007年度)

教科書・ノートなどの持ち込み不可.

裏面も使って良いので,解答はなるべく解答用紙一枚に収めること.

次の3問に答えなさい.(裏面にも問題があるので注意しなさい.)

問題 I. 角運動量演算子 $ec{L}=(L_x,L_y,L_z)$ を $ec{r}$ と $ec{p}$ を演算子として

$$\vec{L} = \vec{r} \times \vec{p}$$

で定義する.

- (1) L_x を x, y, z, p_x, p_y, p_z を用いて表しなさい.
- (2) L_z を x, y, z, p_x, p_y, p_z を用いて表しなさい.
- (3) 次の交換関係が成り立つことを示しなさい.

$$[L_x, L_z] = -i\hbar L_y.$$

ここで , ${\bf i}=\sqrt{-1}$ であり , h をプランク定数として $\hbar=h/2\pi$. また , [A,B]=AB-BA (交換子) である .

(4) 上の結果から,角運動量演算子の x 成分 L_x と z 成分 L_z に対して同時に固有状態となるような状態は,一般には存在できないことを証明しなさい.

問題 II. 角運動演算子 $\vec{L}=(L_1,L_2,L_3)$ は, $[L_j,L_k]=i\hbar\sum_{\ell=1}^3 \varepsilon_{jk\ell}L_\ell$,j,k=1,2,3 という交換関係を満たす.ここで, $\varepsilon_{jk\ell}$ は完全反対称テンソルである.以下,

$$L^2 = L_1^2 + L_2^2 + L_3^2$$
, $L_+ = L_1 + iL_2$, $L_- = L_1 - iL_2$

とする.次の設問に答えなさい.

- (1) L^2 と L_3 とは可換であること,すなわち $[L^2,L_3]=0$ であることを示しなさい.
- (2) 次の2つの関係式が成り立つことを証明しなさい.

$$[L_3, L_+] = \hbar L_+, \qquad [L_3, L_-] = -\hbar L_-.$$

(3) 次の2つの関係式が成り立つことを証明しなさい.

$$L_{+}L_{-} = L^{2} - L_{3}^{2} + \hbar L_{3}, \qquad L_{-}L_{+} = L^{2} - L_{3}^{2} - \hbar L_{3}.$$

1

問題 III $\vec{\lambda}=(\lambda_1,\lambda_2,\lambda_3)$ を、各成分 $\lambda_1,\lambda_2,\lambda_3$ が定数である定べクトルとする。 $\vec{\lambda}$ の大きさを $\lambda=|\vec{\lambda}|$ と書き、 $\vec{\lambda}$ 向きの単位ベクトルを $\hat{\lambda}$ と書くと、 $\vec{\lambda}=\lambda\hat{\lambda}$ と表される。ある定ベクトル \vec{r} に対して ,

$$\vec{r}(\vec{\lambda}) = \exp\left(\frac{\mathrm{i}}{\hbar}\vec{p}\cdot\vec{\lambda}\right)\,\vec{r}\,\exp\left(-\frac{\mathrm{i}}{\hbar}\vec{p}\cdot\vec{\lambda}\right) \tag{1}$$

とする.

(1) $ec{r}(ec{\lambda})$ は次の方程式を満たすことを示しなさい .

$$i\hbar \frac{d}{d\lambda} \vec{r}(\vec{\lambda}) = [\vec{r}(\vec{\lambda}), \vec{p} \cdot \hat{\lambda}]. \tag{2}$$

(2) $[r_1,\,ec p\cdot\hat\lambda],$ $[r_2,\,ec p\cdot\hat\lambda],$ $[r_3,\,ec p\cdot\hat\lambda]$ を求めなさい. その結果を用いると,(2) 式は

$$\frac{d}{d\lambda}\vec{r}(\vec{\lambda}) = \hat{\lambda} \tag{3}$$

と書き直せることを示しなさい.

- (3) 微分方程式(3)の解を求めなさい.
- (4) 以上のことから,量子力学における運動量演算子 \vec{p} の役割について論じなさい.