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Abstract A system of one-dimensional Brownian motions (BMs) conditioned never to col-
lide with each other is realized as (i) Dyson’s BM model, which is a process of eigenvalues
of hermitian matrix-valued diffusion process in the Gaussian unitary ensemble (GUE), and
as (ii) the h-transform of absorbing BM in a Weyl chamber, where the harmonic function
h is the product of differences of variables (the Vandermonde determinant). The Karlin—
McGregor formula gives determinantal expression to the transition probability density of ab-
sorbing BM. We show from the Karlin—-McGregor formula, if the initial state is in the eigen-
value distribution of GUE, the noncolliding BM is a determinantal process, in the sense that
any multitime correlation function is given by a determinant specified by a matrix-kernel.
By taking appropriate scaling limits, spatially homogeneous and inhomogeneous infinite
determinantal processes are derived. We note that the determinantal processes related with
noncolliding particle systems have a feature in common such that the matrix-kernels are
expressed using spectral projections of appropriate effective Hamiltonians. On the common
structure of matrix-kernels, continuity of processes in time is proved and general property
of the determinantal processes is discussed.
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1 Introduction

In the present paper, we discuss noncolliding Brownian motion (BM) in one-dimension with
finite number N of particles and its infinite particle limits N — oo. The condition imposed
to N particles in the model, not to collide with each other, causes “entropy forces" between
all pairs of particles, which are repulsive long-ranged interactions proportional to the inverse
of distances between particles. When we draw sample paths of N particles of the system on
the spatio-temporal plane, random sets of nonintersecting N paths are obtained. Viewing
them as random patterns of polymers or phase boundaries on a plane, the present system
has been used as a model of polymer networks [26, 33], or a model showing wetting (or
melting) transitions [36] in statistical physics; see also [50, 92]. Recently many authors have
reported that notion of noncolliding BM and its discrete counterpart called vicious walk [36]
is very useful to analyze the polynuclear growth models [44, 46, 78, 82], time-dependent
correlations of quantum spin chains [13], traffic problems [7], and the Chern—Simons theory
[6, 27].

1.1 Observations of Three-Dimensional Bessel Process

In order to demonstrate the important connection between the random matrix theory [66]
and the noncolliding BM here we show a couple of observations of the three-dimensional
Bessel process. The noncolliding BM can be regarded as a multivariate generalization of the
three-dimensional Bessel process given below.

Let B (t), B(t), B3(t) be one-dimensional standard BMs (see Sect. 2.1 for definition).
They are assumed to be independent and we consider a 2 x 2 traceless hermitian matrix

Y B\ (1) By(t) +iB3(1)
Mo = (Bz(f) —iB)  —Bi() ) ’ b
where i = /—1. Since the four entries (M;,L)(t))lsj,kgz are BMs, M (1), t € [0, 00) is
regarded as a matrix-valued process, which describe a diffusion process in the space of
2 x 2 traceless hermitian matrices, which is identified with the three-dimensional real space
R? (R denotes the set of all real numbers). At each time ¢ € [0, 00), it will be diagonalized
by an appropriate unitary matrix and the eigenvalue is given by £X (¢) with

X (1) =V/(B1())* + (B2(1)> + (B3 (1))2. (1.2)

If we consider a Brownian particle in R®, B(¢) = (B, (1), B2(t), B3(1)), t € [0, 00), the dis-
tance of the particle from the origin (i.e., the radial coordinate of B(¢)) is given by (1.2)
and thus it equals the eigenvalue process X () associated with the matrix-valued process
MO (¢). This is called the three-dimensional Bessel process in probability theory (see, e.g.
[18, 48]), and a simple application of the Itd formula gives its stochastic differential equation
(SDE) as

dt

dX(@t)=dB()+ X0

tel0,00), X(0)=x>0, (1.3)
where B (¢) is another one-dimensional standard BM than the above B; (), j =1, 2, 3. Cor-
responding to the SDE (1.3), the backward Kolmogorov (Fokker—Planck) equation for the
transition probability density px (¢, y|x), starting from x > O at time ¢t = 0 and arriving at
y >0 at time t > 0, is given by

2

d 19 19
—px(t, =~ — px(t, ——px(t, y|x), 1.4
ath( ylx) 28x2pX( le)+xaxpx( ylx) (1.4)
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and its solution with lim,_,¢ px (¢, y|x) = §(x — y) is obtained as

h
px(t,ylx) = %pabs(t,ylﬂ (1.5)

with
Pavs(, y1x) = p(t, y|x) — p(t, y| — x),

where h(x) = x and p(¢, y|x) is the heat kernel given by (2.1) in Sect. 2.1. The reflection
principle of BM can be used to prove that p,s(#, y|x) is the transition probability density
from x > 0 to y > 0 during time ¢ of the absorbing BM, in which an absorbing wall is set
at the origin and any particle is absorbed if it arrives at the wall. It is a matter of course that
h(x) = x is harmonic, 3*h(x)/dx? = 0, but we dare to say that py is the harmonic transform
(h-transform) of p,, looking at (1.5). We introduce another 2 x 2 matrix

@) _ [ p@E yilx)  p, yilx2)
M>(nyu)_<PUdﬂxO pUJ&Mﬁ) (16)

for x = (x1, x2), ¥y = (y1, 2) € R?, and consider its determinant

£t ylx) =detiMP (¢, y|x)]. (1.7)

Then it is easy to see that

pabs(tvy|x):\/?fZ(t/z»{_y/z’y/z}H_x/z’x/z})? x’y>0' (18)

In summary the three-dimensional Bessel process X (¢), ¢ € [0, co) has two different real-
izations; (i) the eigenvalue-process of 2 x 2 hermitian-matrix valued process (1.1), and (ii)
the i-transform of the absorbing BM with a wall at x = 0. We also observed that the tran-
sition probability density of the absorbing BM has a determinantal expression of a 2 x 2
matrix (1.6—1.8). If we consider the two-dimensional BM, it is represented by motion of a
point in the two-dimensional space (x;, x,) € R%. We put an absorbing boundary on a line
X, = x; and trace the motion of the point in the region W, = {x = (x;, xp) € R?:x; < x5}
The transition probability density from x = (x, x;) € W, to y = (y1, y2) € W5, is generally
given by the determinant (1.7). As a special case of it (with a time-change r — ¢/2), (1.8) is
given.

1.2 Dyson’s BM Model, Karlin-McGregor Formula and Noncolliding BM

The noncolliding BM, X (1) = (X, (¢), X2(¢), ..., Xn(2)),t € [0, 00) is a conditional diffu-
sion process. It has the following two kinds of realizations.

(1) In order to generate the random matrix ensembles, Dyson introduced N x N matrix-
valued diffusion processes [30]. For the Gaussian unitary ensemble (GUE), N? indepen-
dent one-dimensional BMs are used to assign entries of matrix to satisfy the condition
that the matrix is hermitian at any time. Eigenvalues are real and define an N-particle
system in one dimension called Dyson’s BM model (with the parameter 8 = 2 corre-
sponding to GUE). This process solves the SDE (see [55] for the proof using generalized
Bru’s theorem)

dt

dX;(t)=dB;(t) + Z m’
J

1<k<N:k#j

l<j=<N, 1€[0,00), (1.9
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where B(t) = (B;(t), ..., By(t)) is an N-dimensional BM; B;(t), 1 < j < N, are inde-
pendent one-dimensional standard BMs. The SDE (1.9) is an N-variable generalization
of the SDE for the three-dimensional Bessel process (1.3). It was proved that with prob-
ability one Dyson’s BM is non-colliding [81].

(ii) We consider the following subset of RV,

WN:{x:(xl,...,xN)eRN:xl<xz<---<xN}. (110)

It is called the Weyl chamber of type Ay_; [41, 55]. The absorbing BM is defined by
putting absorbing walls at all boundaries of the region Wy, whose transition probability
density, when the process starts from x € Wy at time t = 0 and arrives at y € Wy at
time ¢ > 0, is given by

fu(t.ylo) = det [p(t.ylx0)l. x.y€Wy. (1L11)

This determinantal expression is known as the Karlin—-McGregor formula [49]. (Such
a determinantal formula for nonintersecting paths is known as the Lindstron—Gessel—
Viennot formula [40, 62] in the enumerative combinatorics, see also [26, 32, 33, 36,
45, 53, 56, 60, 61, 73, 90].) The noncolliding BM is given by the i-transform of the
absorbing BM [41]

h
eyl = 2 6y, (1.12)
hy(x)
where
vy = T] (xk—x,):l<51it<N[xjf*1] (1.13)
1<j<k<N -

is the Vandermonde determinant [39, 64, 89].

We note that there appear three different kinds of matrices. The matrices represent-
ing Dyson’s matrix-valued process ((1.1) for the simplest case), matrices in the Karlin—
McGregor determinants ((1.7) and (1.11)) and that in the Vandermonde determinant (1.13).
Of course, the equivalence of Dyson’s BM model (the eigenvalue process of the first kind of
matrices) with the noncolliding BM implies direct connection between the random matrix
theory and stochastic processes. In the present paper, however, we will show that the Karlin—
McGregor formula is much more important. In Sect. 3 we will show that the Vandermonde
determinant appears in the Schur function expansion of the Karlin-McGregor determinant.
With the combination of these two determinants, the orthogonal polynomial method is ap-
plicable to study the processes. This method has been developed to analyze multi-matrix
models in the random matrix theory [66].

1.3 Matrix-Kernels and Determinantal Processes

In Sect. 2, we will explain that the Hermite orthonormal functions are useful to represent
BMs. Precise descriptions of facts briefly mentioned above will be given in Sect. 3. Staring
from Karlin—-McGregor’s determinantal expression of transition probability density, we will
prove in Sect. 4 that, if we specify the initial configuration as the GUE-eigenvalue distri-
bution, the generating function of multitime correlation functions is given by a Fredholm
determinant for the noncolliding BM, and thus multitime correlation functions are generally
given by determinants (Theorem 4.1). The system whose spatial correlations are given by
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determinants is usually called a determinantal point field (or a determinantal point process)
in probability theory [84, 85]. Theorem 4.1 states that the noncolliding BM is not only a de-
terminantal point field at any fixed time 0 < ¢ < 0o, but it is also a determinantal point field
on the spatio-temporal plane. We say that the noncolliding BM is a (finite) determinantal
process to express this situation.

Determinantal processes are generally determined by their matrix-kernels (see, for ex-
ample, [96]). The matrix-kernel of our finite noncolliding BM is expressed by the Her-
mite orthonormal functions {¢}72, which is called the extended Hermite kernel in [96].
In Sect. 5 we will show that the asymptotic properties of {¢}72, completely determine in-
finite particle limits of the matrix-kernel and then the determinantal process. Appropriate
scaling limits are performed and two infinite particle systems are derived from the noncol-
liding BM. One of them is the spatially homogeneous infinite determinantal process with
matrix-kernel expressed by trigonometric functions (Theorem 5.1) and another is the spa-
tially inhomogeneous one with matrix-kernel expressed by Airy functions (Theorem 5.2).
The former kernel is called the extended sine kernel and the latter the extended Airy kernel
in [96]. We will claim in Sect. 6 that these three determinantal processes (one finite and two
infinite systems) and others reported in references [46, 51, 57, 78, 95, 96] have a common
structure; the matrix-kernels are expressed by spectral projections associated with appro-
priate self-adjoint operators (effective Hamiltonians) [78]. As explained by Spohn [88] and
by Prihofer and Spohn [78], this common feature is shared also with the 1 + 1 dimensional
Fermi field in quantum mechanics (see also [35, 43]). It may be due to the similarity between
the Karlin—-McGregor formula for noncolliding systems and the Slater determinant for free
fermion systems with the Fermi exclusion principle [11]. For finite and infinite determinan-
tal processes with matrix-kernels associated with spectral projections, we will prove that the
determinantal processes are continuous in time (Lemma 7.1) and discuss the bilinear forms
derived from correlation functions (Proposition 7.2). Future problems are given in Sect. 8.

2 Brownian Motion and Hermite Polynomials
2.1 Diffusion Equation and Hamiltonian of Harmonic Oscillator

Let (2, F, P) be the probability space. One-dimensional standard BM starting from a point
xo € R is defined as a real-valued stochastic process {B(f, w) : t € [0, 00)}, which satisfies
the following conditions (see, for example, [42, 48]). Here w is a label on sample path,
w € Q.

1. B(0, w) = x, with probability 1.

2. For any fixed w € 2, B(t) is a continuous real-function of ¢ with probability 1. (With this
property we say that the paths are continuous in time.)

3. Forany seriesof times tp=0<t; <---<ty, M =1,2, ..., {B(tys1) —B(tw)m=01...m-1
are independent and they are normally distributed with mean O and variance f,,+1 — 1.

Then if we introduce an integral kernel (Gaussian kernel)

(x —x')?

1
t,x|x) = expy — , t>0,x,x €R, 2.1
p(t, x|x") Nz P{ > } (2.1)

the probability that the BM stays in an interval [a,,, b,,], —00 < a,, < b,,, < 00, at each time
tw,m=1,2,..., M, is given by

P(B(tm) € [am, bm]am =12, »M)
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by by
/ dxl/ dx;-- / dxy ]_[ Pttt — s X1 [ X))

m=0

That is, the transition probability density of the BM is given by (2.1). Since it satisfies the
one-dimensional diffusion equation (heat equation)

2

ad
—u(t,x)=

o 2 9% 2u(t X) (2.2)

with the initial condition u (0, x) = §(x — x'), it is specially called the heat kernel.
We consider the following transformation of variables, (¢, x) — (7, {);

X
T =1(t) =logt, =, x)=— (2.3)
g {=7¢ NG
and set
u(t, x) = e~ IRy (T, o). 2.4)
Then the diffusion equation (2.2) is transformed to
ad 1 1
—U(t, ) =—+ HH—— U(z,¢), (2.5)
aT 2
where
Mo — 1 92 41 (2.6)
H= 350 é“ .

Note that Hy is identified with the Hamiltonian in the coordinate(¢)-representation of the
one-dimensional harmonic oscillator in quantum mechanics, if we set the mass of the oscil-
lator m = 1, the circular frequency w =1, and h=1.

Following Dirac’s description [11, 28], we consider the real-valued Hilbert space with
basis {|¢) : ¢ € R}, which is orthonormal (¢|¢") = 8(¢ — ¢') and complete

fd;“ [E){¢]=1. 2.7
R

Let ﬁH be the operator such that (¢ /Iﬁﬂlg Yy =38(¢' — ¢)Hy with (2.6). We consider a state
vector |W (7)), which follows the equation

)
37 V@) =— (HH - —)I‘P(f)) (2.8)
T

If we multiply (¢] to (2.8) from the left, we will have the (2.5) with U(z, ¢) = (¢ |V (7)).
Given |¥ (1)), T’ € (—00, 00), the solution of (2.8) for T > 7’ is obtained as

| (1)) =exp{—%<ﬁH - %)(r - r’)}l\ll(r’))-
Then

1/~ 1
U, ¢) = (CICXP{—§<HH - §>(T - T/)}I‘I’(T'))

o 1/~ 1
=/ d(’ (;'exp{_i(ﬁﬂ_ E)(T —f,)}k-,)U(T/,;/),
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where (2.7) was used. Insert this result into (2.4), we have

o0 N 1/~ 1
u(t, x) = / dy = FHIPHEHE >2>/2<¢|exp{—5<HH - 5)@ - r’>}|;’>u<z’,x’>

o0
o0
=/ dx'p(t —t', x|xu(t’,x),
—00
where
Pt — 1 xlx) = e el g, Do —on iy
, 7 5

2
e—x2/4t+(x’)2/4t’< X

V2 V2 e""{‘%@‘*ﬁ)(" } r> 29

This is the transition probability density previously given as (2.1).

1

2.2 Hermite Polynomials and Equalities
Let N={1,2,3,...} and No = N U {0}. The eigenvalues of ﬁH are n + 1/2 with n € N;

ﬁHln) = (n + 1/2)|n). Here {|n) : n € Ny} denotes the set of eigenvectors of ﬁH which
is orthonormal (n|n’) =4, ,» and complete fo:o |n)(n] = 1. Let {H,(x) : n € Ny} be the

Hermite polynomials
d n
H,(x) = e (——) e
dx

[n/2]

) (zx)n 2k
—n’Z( | e — AT (2.10)

where [z] denotes the largest number not greater than z. They are orthogonal
/ dx e Hy(x)Hy(x) = hppm, n,meNg
R

with h, = /m2"n!. We set

e P H,(0). 2.11)

1
()= NS
Then {¢,(¢) : n € Ny} are orthonormal and

(€ln) = (nlg) =@ (£)

is established.
Now we define

U IV
=_ --). 2.12
Hw 2(HH 2) ( )
Then
ﬁ¢|n>=%|n>, n €Ny (2.13)
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and (2.9) gives

, 1, e _a ~
plt =1, x|x') = 75 EEREETRN e n) (n]e™ T | )
n=0

1 2 2 e /

— _671/27;' /2472 Z<§|efn‘r/2|n>(n|enr /2|é./)
ﬁ n=0
1 [eS)

= AP 2NT =2, ()0, (),
NG 2

that is

1 2 N2 ras! i t n/2 X x’
plt =1/, x|x)) = —=e AT (—) @n (—) @ (—) : 2.14)
NGT, 2:; t Var) T \Var

This expression for the heat kernel (2.1) is called Mehler’s formula [10, 91].
We introduce the vectors

.
|, x) =2 |g),

2.15
<t,x| — Le—(f+fz)/2<;|e—ﬁ¢r. ( )

It is easy to see that orthonormality and completeness of {|¢) : ¢ € R} imply (¢, x|z, x) =
§(x —x’) and

/dx|t,x)(t,x|= 1. (2.16)
R

By (2.16), we have the equalities for 0 <t <1, <13
/ dxy(t3, x3|t2, X2){t2, X21t1, x1) = {t3, x3]t1, X1), x1,x3 €R,
R
f dxi({ty, xalty, x1){t1, x1|n) = (2, x2|n), n €Ny, x2 €R,
R

fdxl/dxz(n|[2ax2)(t2,x2|llaxl)(thxlm/) =(nln') =8, n, n,n" €Ny.
R R

Though these seem to be trivial, if we note that (2.9) is rewritten as
pt—t,x|x)=({t,x|t',x"), 0<t <t,x,x' €R, (2.17)
they become meaningful; for 0 <, <, <t3
o0
/ dx; p(t3 — tp, x3|x2) p(t2 — 11, X2|x1) = p(ts — 11, x3]x1), x1,x3 €R, (2.18)
—00
/ dx) p(ty —ty, X2|x1)Pu (t1, X1) = (2, x2), n €Ny, x2 €R, (2.19)
—o0

o0 o0
/ dxl/ dxy ¢ (ty, X2) p(t2 — t1, X2|x )y (11, 1) = 8w, n,n" €Ny, (2.20)
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where
U2, -2 X
Ou(t,x) = (t,x|n) = Ef e ©n 7)) (2.21)
Bult, X) = (nt, x) = "2 Mg, (\%) ., neN,. (2.22)

Equation (2.18) is called the Chapman—Kolmogorov equation. The equalities (2.19) mean
invariance of the functions ¢,, n € Ny, with respect to the heat kernel.

3 Noncolliding Systems
3.1 Application of Karlin—-McGregor Formula

Here we introduce the noncolliding BM in a finite time-period (0, 7) with T > 0. It is
defined as an N-particle system of one-dimensional standard BMs conditioned not to collide
with each other in (0, 7). As mentioned in Sect. 1.2, the transition probability density of the
absorbing BM in the Weyl chamber Wy of type Ay_; is given by (1.11) as an application
of Karlin—-McGregor formula [49]. The probability that B(t) starting from x’ € Wy stays in
Wy up to at least time 7 > 0 is given by

Ny (t, x) :/ v, xlxYdx, x' eWy. (3.1
Wy
The transition probability density of noncolliding BM is then given by
NN (T — 1, x)
x5 t,x) = ——— fn@ — 1t x|x’ 3.2
gn.r( V= ') (3.2)

for0 <t <t <T,x,x’ € Wy [52-54]. It should be noted that this process is in general
temporally inhomogeneous. In the following, we will consider the T — oo limit to make
the process be homogeneous in time.

3.2 Schur Function Expansion

By multilinearity of determinant (1.11) with (2.1),

l N/2 2 72 .
Fu(t, x|x") = <_> e UPHED2 go [k,
2t 1<j,k<N

where |x|? = Zl;’=1 x?. Consider Fy(x, y) = det|<;,<y[e*/’*] for a pair of multivariates
x = {x;}’_, and y = {y;}’_,. By definition of determinant, F(x, y) is skew-symmetric un-
der any exchange of indices of {x;} and also it is for {y;}; Let Sy be the symmetric group
of N variables (the set of all permutations of N variables) and for o € Sy write o(x) =
(Xo(1ys - - s Xo(vy). Then for any o € Sy, Fy(o(x),y) = Fn(x,0(y)) =sgn(o)Fy(x, y).
A fundamental skew-symmetric polynomials of multivariate x is given by a product of
differences (the Vandermonde determinant) (1.13). The quotient of Fy(x,y) divided by
hy(x)hn(y) is a symmetric function both of x and y. The following lemma shows an ex-
pansion of the symmetric part using the Schur functions, which are labeled by partitions
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w = (i1, U2, ...), sets of nonnegative integers in decreasing order | > py > -+, and de-
fined by

() = SHi=) el (3.3)
S = . .
: deti<jk<nx; N

The non-zero ;’s in a partition p are called parts of 4 and the number of parts is called
length of u and denoted by £(w) [39, 64, 89]. The Schur function expansion is a special
case of character expansions (see [8, 9, 43, 55, 59]). Let I'(a) = f0°° e Yy~ ldy fora > 0
(the Gamma function) and note I'(a + 1) = a! if a € Ny.

Lemma 3.1
det [e%7%] = hy(x)hn () Z & 5 (0)59)
I=j k=N wAl()<N Hk:l F('u’k + N— k + 1)
hy(x)hy(y) .
= ———— x {1+ O(x])} in|x|— 0. (3.49)
[JAERYCO

Proof By multilinearity of determinant, we have
()"
det [e"*] = det Z N
1<jk<N 1<jk=N| “— 'n+1)

1
- Z l_lr(n T 1<det [y ] 3.5

n=(ny,ny,..., nN)ENN”” 1
We can see that for some symmetric function f(n) of n = (n,...,ny) € N(’)V ,
D ) det [0y 1=} f(n)— > et [Gy0"0)
neNN neNN 'ae SN

and

D | et 30" 0] = det 1], det "]

oeSy

Since detlfj,kSN[x;”‘] = 0if ny, = ny, for any pair 1 <k; #k, <N, (3.5) equals

Z deti<j <y (x7) deti<g men (V;")
T(n;+1)

0<nj<np<--<ny nj:l
Here we change the variables in summation from {n;} to {u;} by u; =n; — N+ j,1 <
J < N. Using (3.3) we obtain the first equation of (3.4). Since s,(0) =0 unless u =0 =
(0,0, ...,0) € N¥, and 59(0) = 1, the estimation in |x| — 0 is given as shown by the second
equation of (3.4). O

By this lemma, we have the estimate

1 / /
fvt, x|x) = az’Nz/th(x)hN(x/)e""'z/z’ X {1 +o<|\’;;|>} in 'f/;l -0 (3.6
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with Cy = 2m)N/? ]_[?]:] I'(j). The integral formula

N .
/ e |y (0) 2 dx = 2m)N2(2a) "Ny N=D+D/2 I rd+jy)
RN il r+y)

is found in [66] ((17.6.7) p. 321) as a variation of the Selberg integral [83], whose proof was
given in [63]. If we set y = 1/2, a = 1/2¢ and note that the integral over R¥ can be replaced
by the integral over Wy multiplied by N!, we have

/ e H 2y (x)dx = Clt VDA 3.7)
Wy
with C}, = 2N/ ]_[?]:l ['(j/2). Similarly by setting y = 1 and a = 1/2t, we have
/ e (hy (x))2dx = CytV' 2, (3.8)
Wy

Using (3.7) with (3.6), we obtain the asymptotics of Ny,

Ny(t,x) = %fNW*W“hN(x/) x {1 + O('}))} in 'j; — 0. (3.9)
N

The integral (3.8) will be used shortly.
3.3 Temporally Homogeneous Limit

By the above estimate (3.9), we can take the 7 — oo limit in (3.2) and obtain the transition
probability density, which is homogeneous in time, i.e., a function of time difference r — ',
pn(t =1, x|x") = lim gy r(t',x'; 1, x)
T—o0 :
1
hy(x')

From now on, we consider the noncolliding BM, which is defined by this transition prob-
ability density. It is a temporally homogeneous process and we denote it by X(¢) =
(Xl(t)7 XZO)? ey XN(t))

=hy() fn(t =1, x|x) (3.10)

Remark 1 The product of differences (the Vandermonde determinant) 4 (x) given by (1.13)
is a harmonic function in the sense

N 2

el
V() =) 5 hy (@) =0,

j=1 "7

which has strictly positive values at interior points of Wy and zero at the boundary. Equa-
tion (3.10) is considered as a transformation from fy to py associated with the harmonic
function, which is called the A-transform [29]. That is, the temporally homogeneous non-
colliding BM is an h-transform by Ay of the absorbing BM in the Weyl chamber Wy [41].
It is easy to confirm that py (¢, -|x) satisfies the following backward Kolmogorov equation

a 1
a—tu(t,x) = Evzu(t,x) + Vloghy(x) - Vu(t, x),
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which is a multivariate extension of (1.4). It implies that the process X (¢) is a diffusion
process, which solves the SDE (1.9) of Dyson’s BM model (with 8 = 2), which describes the
time-evolution of eigenvalues of hermitian matrix-valued (GUE) diffusion process [30, 55].
This equivalence between Dyson’s BM model for GUE (the eigenvalue part of the matrix-
valued BM) and the present noncolliding BM (BM conditioned not to collide) is a multi-
dimensional extension of the equivalence between the three-dimensional Bessel process (the
radial coordinate of the three-dimensional BM) and the one-dimensional BM conditioned to
stay in the positive region B(¢) > 0, as announced in Sect. 1. See also [53, 55, 58].

Let vg(x) be the probability density at time ¢y, > 0. Then the probability density of distri-
bution X (¢), t > 1y is given by

v (x) =/ Pyt — 1o, x|x")vo(x")dx’
Wy

i
—hv) | fel =10, xI1x) VO(x,) dx'. 3.11)
Wy hn(x)
By the estimate (3.6), we will see that
1
v (x) =~ C—t_Nz/ze_‘x‘z/Z’(hN(x))z int— oo, (3.12)
N

if the distribution vy has finite moment. Note that the integral formula (3.8) guarantees that
(3.12) is normalized. It should be noted that the distribution (3.12) is equal to the eigenvalue
distribution of hermitian random-matrices in GUE with variance o> =  [66].

Proposition 3.2 For any initial distribution having finite moment, the asymptote of prob-
ability density of distribution of the noncolliding BM, X (t), in t — 00 is expressed by the
eigenvalue distribution of GUE with variance t.

4 Determinantal Process
4.1 GUE Initial Distribution

Consider a sequence of times, 0 <ty <t; <--- <ty, M =1,2,... for observations of dis-
tribution of X (¢). Given the initial distribution v at time #;, multitime probability density is
given using (3.10) as

o, x5, x5y, x ™)
M—1
=[] vt =t x" 01 )0p ()
m=0
M-1
=hy ") [T £y =t x5 )

m=0

Vo (x @)

Ty @) 4.1)

Now we assume that v is the GUE-eigenvalue distribution with variance %y,

1

vo(x(O)) — C_IJN2/26_|x(0)‘2/2[0 (hN(x(O)))z. 4.2)
N
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Then (4.1) becomes the product of fy’s multiplied by a factor

1 _
oty e R (D) (x0), 4.3)
N

By multilinearity of determinant and the fact that the coefficient of the highest order term of
the Hermite polynomial H, (x) is (2x)" (see (2.10)), the following equality is established,

| ?et [Hj—1(xx)]=hy(2x).

Then if we define the multivariate functions

Mo (x) = 1<51%t<N[¢j—1 (to, x1)],

. “4.4)
uy(x) = det [¢;_i(ty, x)],
1<j,k<N

where ¢, and an are given by (2.21) and (2.22), respectively, the factor (4.3) is readily shown
to be equal to 1o(x @)y (x ™). That is, the multitime probability density (4.1) is written
as

M—1

1 ) TT et =t x 01 1o (6 ).
m=0

This expression shows that the probability law is invariant under any permutation of
indices of particles; x(m) = xf,"g;), 0 <m < M,o € Sy. Then description will be easier if
we regard that partlcles are identical and indistinguishable. We denote by X the space of
countable subsets & of R satisfying (§ N K) < oo for any compact subset K. The space X
is a Polish space with the vague topology. For x = (x1, x2,...,x,) € Uff’ , W, we denote
{x,} _; € X simply by {x}. Then we consider the process on the set X, B (t) ={X@®},te
[to, oo), such that, forany M + 1 timesty <t; <--- <ty_; <ty <oo (M =0,1,2,...) the
multitime probability density is given of the form

pa (to, (xO%; 10, e st (Y0 1y, (xO0))

M-1
= (Y TT S Csr = s x O (@) 4.5)
m=0
Forx™ eRN 0<m<M,and N'=1,2,..., N, weputxx,rf) =(x (m), ('"),..., ](\',7))
For a sequence {N,,}}_; of positive integers less than or equal to N, we define the
(No, ..., Ny)-multitime correlation function by
p (o, x0b tr, Ax )b st X))

1 N
- 0y. () (m)
_/nM_ORNNm py (o, (™} .ty {x })| | N [ ax. @6

m=l 0 " j=Npm+1

Expectations with respect to the configurations {X (#)}, {X(#)}, ..., {X(¢y)} are denoted
by Ex:
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En[f({X @)} {X @}, ... . {X@)}D]

1 M+1
—( ) (M)
—(N!) /RN(Mf({x b ™0}

M N
< pu(to, (xOY: it D T [ax ™. 4.7)

m=0 j=1

Remark 2 Sett' =0,t =1, > 0,x =x© in (3.10) and consider the limit x’ — 0. By (3.6),
we can see

lim py(to, x@)x") = vo(x ). (4.8)
|x’|—0

This fact is essentially the same thing with that stated as Proposition 3.2 for the scaling
property of the process. The GUE-eigenvalue distribution (4.2) adopted here as the initial
distribution at time ¢y, > 0 is immediately realized if we start the present noncolliding system
at time O from {0}. The state {0}, which is a boundary of W, is entrance [52-54].

4.2 Generating Function

Let Cy(R) be the set of all continuous real functions with compact supports. For f =
(fos fireevs f1) € CoRM and 6 = (6, 6y, ..., 0y) € RM, the generating function for mul-
titime correlation functions is defined for the process {X (¢)},¢ € [0, T] as

M N
Wy (f:8) =Ey [exp{zem 3 X5, (rm»” (4.9)

m=0 Jm=1
Let
X (x) =€ — 1 0<m<M,

and write (4.9) as Wy[x]. Then by the definition of multitime correlation function (4.6), we
have

N N
Wl = ZZ ZHN.f [Tax [, TTa | ndx<M>
oG RY G

No=0 N} = Nyr=0m=0 RNM
M Np
0
< T T Tom Gy ow o, (e s a1, (e} taa (). (4.10)
m=0 j=1

By the definition (4.9) with (4.7) and (4.5), we have

M+1 o
Uylx] = (N) /R rmdx

X det 1§ (1. x M>)(1+xM(x,£M)>)]

+1),.0m) (m)
x 1‘[01;% Pt = 1 VL) A 1 (™))
e

x| det [;i(t0, 5]

1<j.k
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By definition of determinant, it is easy to prove the following identity for square integrable
continuous functions g;, g;,1 < j <N,

N 1<j.k<N

1 N
i /R det [g;(x0)] qggN[gj(xk)]!:[ldxj=1<_ggt<N[L gj(x>gk(x)dx], 4.11)

which is called the Heine identity. By repeated applications of this identity we have
Wylx]l= det [Fulxll 4.12)
1<jk<N

with

M
Ff"[X]=/ [ [dx™ (@1t x*)A + xaa (x ™))}
RM+1

m=0
M—1
< [ TP @it = s x" V1) (A 4 Y () )1 (19, x ).

m=0

By the Chapman—-Kolmogorov equation (2.18) and the invariance (2.20), Fjx[0] = §;¢ and
then Wy[0] = 1, which implies that (4.5) is indeed normalized. If we use the notations
introduced in Sect. 2, it is written as

M
Filx1= / de(’”) (G = U, V1 + xpr (x™)}
RM

S
[
=
(=1

X [ Ut X1, x P 4 s (2N t0, P Tk = 1)
0

m

M+1

—G-tk-n+Y Y f]‘[dx<'"n> ity X0) o, (£O70)

=0 M>m|>-->my>0
X (tml,x<ml)|tm21x(m2)> X

X (tmyys X"ty s XY Yo, (XYt x 0 K — 1), (4.13)

Now we introduce an indicator i+ such that

el ) = f g e = (4.14)

, otherwise.
Then (4.13) can be written of the form of an infinite series

oo M
Faldl=(G—1Tk-1+3Y 3 - Z//]‘[dx‘m”u—luml X0) o (670)

€=0 m=0 my=0
X (g, XV Tty x72))

5 (s XV X0 s, (2t x7Oe — 1),
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in which all terms with £ > M + 1 are zero by (4.14). Let

R, 9) = (s X114 10, V) X0 (), myn€{0,1,..., M}, x,y €R,

(4.15)

and define an M x M matrix-kernel X, whose (m, n)-element is given by the integral kernel
(4.15). The (m, n)-element of its gth power ()%, g =2, 3, ..., will be the following kernel

given by (¢ — 1)-multiple integral,

M M
(G = Y [axm 3 [ dxmenge )
R m -0 R
-

m1=0

X e X y{':q—l,ll(x(mqfl)’ y)

Then we have

M M
Fulxl=(j —1k=1) +Z/Rde/Rdy<j — 1y, X) ) (X)

m=0 n=0

x {sm,na(x — )+ Y IxD)T" (x, y)}(tn, ylk=1).

g=1

Let 17" (x,y) =6mn6(x —y). Since it is easy to see that

M o0
> / dy[1— 71" (x, y) {az,naw -2+ Y @1, z)} =1""(x,2),
=0 /R

q=1

we can write

~

1 m,n
~ (x, ).
X+

Smnd(x —y)+ Z[(i+)q]rn.r1(x’ y) = |:i -

g=1
Then (4.16) becomes

M
Filx1 =8+ / dx B{" (x)C;" (x),
m=0 R

where

M i n,m
B (x) =Z/Rdy (= Ut )2 () [i — } (y. %),

n=0 X+

" (x) = (t, x|k — 1),

4.3 Fredholm Determinant and Determinantal Process

(4.16)

(4.17)

(4.18)

(4.19)

Let Ej(-m) (x) and 5;'")(x), 0<m < M,1<j <N, be square integrable continuous func-

tions. Then the following formulae can be proved;
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M
. ~(4m) ~(m)
| det N[aj,k +X_;) /R dx B (x)C} (x):|

- det [3,4,,,15].(,”),_,,(,1) + /R dx B, (0 CY) (x)]

1<jm j0 <N ,0<m.n<M

Ny

N N N M ] No © Ny o on
I HN—,,,!ANOHM-” /RN][[Idxj fR []ax!

Ny
No=O0N{=0  Ny=0m=0 j=1

1<j=<Nm,1=k=Np,0=m.n=M

N
x det [Z cim (xj.’"))E;,")(xf’))}. (4.20)
p=1

The expansion formula of the last expression defines the Fredholm determinant, which is
abbreviated as

N
Det|:i'"‘" (x.y)+ Y C"x)BY ()’)i|~

p=1

The generating function (4.12) with (4.18) and (4.19) is then expressed as the Fredholm
determinant,

M l,n
\IJN[X]=Det[imv"(x,z)+Z/dy(tm,xWNltz,ym(y)[ ] (y,z):|, 4.21)
=0 YR

i_/\

X+

where
N
PY=>"Ip—1){p—1l. (4.22)
p=1

Note that (4.17) implies that

M ’1‘ l,n
1'"'"(x,z)=Z/dy{l’”"(x,y)—<tm,XI1+|te,y>Xe(y)}[A — ] (. 2).
=0 VR =X+

Plugging this into (4.21), we have

M . . i tn
\IJN[x]=Det[2fdy[1"’~‘(x,y>+<tm,x|(7>N—1+)|rz,y>x£(y>][i = ] (y,z)]
=0 /R

- X+

. . i m,n
= Det[1"" (x, ¥) + (tm, X[(P" = 1|t y) xn (¥)] Det Hi — } (x, y)}
- X+

= Det[1"" (x, y) + (tm, XI(PY = 1) |t0, ) xa ()] (4.23)

Here

i m,n .
Det|:|:i — ] (x,y)] = 1/Det[[1 — X 1™" (x, )],
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and we have used Det[[1 — ¥ 1™" (x, y)] = 1, which is concluded from the fact that [1 —
X+1™"(x, y) = 0 for m < n by the definition of X, (4.15) with (4.14), and it is § (x — y) for
m=n.

Let

S%,n(x’ y) = <tnz7x|PN|tn’ y)»
S, y) = =t x|(1e = PVt y).

Following the formulae given in Sect. 2, Si,"" is determined as

N

SN Y)Y =Y (twx1p = 1)(p = 1t y)

p=1

N

1 2 2 L\ x y
= e_X [4tm+y /4tnz<_n) <— p— 1><p_1’—>
2im =\, 2, e

1 2 4ty 4 =\ X y
— e [Atmty” /4t o .
21 ,Z; (t) # < 21, ) # («/%)

m n

Combination of this with (2.14) gives Sy as

Ex’n(xy y) = S;\nfn(x» Y) = Vimomy Pt — 10, X1y)

1 2 4ty 4 =\ X y
o Atm+y? At <_"> ( > ( ) ifm<n,
2, ; w) Y\ )"\ =

1 2 2 1, \F? x y
_ €7X tm+y< /4t on e ifm > n,
- > (2) () e ()

(4.24)

where 1, is the indicator of a condition w; 1., = 1 if w is satisfied and 1, = 0 otherwise.

As shown above, not {gx’” (x, y)} themselves, but determinants of matrices made of them
are observables. By definition of determinant, factors {e~*/4m+>*/4u} of {:S:x‘” (x,y)} in
(4.24) are completely cancelled out, when we calculate determinants. So here we define the
following matrix-kernel by omitting these factors in {§X}*” x, )},

1

2t NX_:<I’I> <\/%Tm> Pk (\/%7) ifm<n,

Ky, X1 10, y) = o o2 (4.25)
(i) w(G)e(G) e
P 20, Pk 6T )
and rewrite (4.23) as
\IIN[X] - Det[am,ns(-x - y) + KN(trm X5 Iy, y)Xn (y)] (426)
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This Fredholm determinant is by definition expanded as

Det[am,na(-x - y) + KN(tms X5 b, y)Xn(y)]

N N N M 1 No
S Y g [ s [ et n
] TTax
No=0N;=0 Ny=0m=0 Nm. RNO] RMI j=1 RNM
M Ny
(m) (n)
Xl_[(J]_[1xm(x )1<J<Nm 1<l§1§eIE/n,OSm,n<M[KN(tm7 ' t"’x" )l 4.27)
m=0 j

Comparison of (4.27) and (4.10) determines all of the multitime correlation functions. Now
we summarize the above results as a theorem.

Theorem 4.1 The temporally homogeneous noncolliding BM, E},(t) = {X(t)}, starting
from the GUE-eigenvalue distribution (4.2) at time ty > 0, is a finite determinantal process
in the following sense.

(1) The multitime generating function is given by the Fredholm determinant (4.26), where
the matrix-kernel Ky is given by (4.25).

(ii) Any multitime correlation function is given by a determinant; for any M > 0, any
sequence {N,}M_, of positive integers less than or equal to N, any time sequence

to<t; <--- <ty <oo,the (Ny, ..., Ny)-multitime correlation function is given by
p (o, XY 11, )b st {x“‘”})
= det (K (s x5 1, )] (4.28)

1<j<Nm 1<k<N;.,0<m.,n<M
The following relations hold for the Hermite polynomials,
Hiy1(x) = 2x Hy(x) — 2k Hy—1 (x), (4.29)

d
TH(x) = 2kHi (), k=123, (4.30)
X

From (4.29), the Christoffel-Darboux formula is derived for the Hermite orthonormal func-
tions {@x (X) }keny»

N-1
Zwk(x)wk(y) \/7¢N(X)WN 1()’)2_<§N—1(X)</)N(y) 431
k=0

for x # y. Equation (4.30) can be used to evaluate the limit y — x in (4.31) and we find
N-1
(e ()} = Nion (0)F = VNN + Dew 1 () oy 1 (x).

k=0
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Then the matrix-kernel have the following simpler expressions if m =n,

KN(tmaX; tmv y)

ﬁ (pN(x/V 2tm)¢)N—l(y/V Ztm) - §0N—1(X/v 2tm)§0N(y/V 2tm)
V 2 xX—y
i ,
_ 11 XEY e i i (4.32)
V2t {N l(pN <v2tm)} VNI Do (vm) v (vm)}
ifx=y.

5 Infinite Particle Systems
5.1 Wigner’s Semicircle Law

The density of E§ () is given by
" x :
mieo= 2 e (75)]

- () - () ()]

as a special case (M = 0, Ng = 1 with setting ty = ) of Theorem 4.1 with (4.32). It is easy to
confirm that f fooo pn(t, x)dx = N by the orthonormality of ¢ (x). The following estimations
for asymptote in N — oo are established [10, 91]. Let ¢ and w be the fixed positive numbers.
We have

. 1 9\ 174
@ ¢N(V2N+1cos¢):m(ﬁ>

. N 1 - 5 3 o 1 -
x{sm[(;—i—Z)(sm ¢ — ¢)+Zn:|+ <ﬁ>} e<¢p<m—e.

, | L\ VA
(i) @n(vV2N + lcoshg) = Wi <ﬁ>

N 1 . 3 1
><exp[<3+z>(2¢—smh2¢)+zn:|{1+O<N>}, e<¢p<w.

Using them, we will have the asymptote of the density profile in N — oo,

1

2
— 2N—;—t if —2/N7 < x <2/Ni.
on(t,x)={ T

(5.1)

0, otherwise.
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The distribution of N particles has a finite support, whose interval o« /N, and thus p ~
VN = 00 as N — oo for fixed 0 < 1 < 00. If we set x =2+/Nt&, we see

2 .
—V1-§2d¢ if-1<&<1,
b

1
lim — = 2
Ngnoo NpN(t,x)dx (5.2)

0, otherwise,

which is known as Wigner’s semicircle law [66]. See also [81]. In the following we consider
scaling limit, in which long-term limit # — oo is taken at the same time with N — ooc.

5.2 Bulk Scaling Limit and Homogeneous Infinite System
First we consider the central region x >~ 0 in the semicircle-shaped profile of particle density
in the scaling limit

t~N — oo. (5.3)

In this limit the system becomes homogeneous also in space with a constant density p =
1 /7. We call this the bulk scaling limit.

Theorem 5.1 For any M > 0, any sequence {N,}"_ of positive integers, and any strictly

increasing sequence {s,,}*_, of positive numbers

lim oy (N, {(xiy): N +2s1, {2y} oo N+ 2500, {xig)))
N—oo

= det (K (5, x5 5, 0]
1<j <N, 1<k<N, .0<sm,n<M J
_ ). ). . (M)
:psin(oﬂi:[\lossl»gjv] ""’SM’SNM )1 (54)

where

l ! (sft)u2 _ .
due cos(u(y — x)) ift <s,
T Jo

K(t.y;s.x) = 5:1((;7__3 ift =s, (5.5)

1 [ 2
——/ due """ cos(u(y — x)) ift >s.
1

T

Proof For any u € R, the formula

Jim (=) ¢y, (%) = cosu
—00 T
| (5.6)
s aNepl/A u _
elggo( 1)°¢ ¢2¢+1(2ﬁ) ﬁsmu

are known [10, 91]. We note that
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o\ (N +2s,\"
tw) — \N+2s,
o 1+ 25, N - 28, -
- N N

~ eZ(.v,, —sm)a/N

a/N

for N > 1 with fixed number «. Then (4.25) with m < n is evaluated in N — 00 as

N/2-1
1 . [N 2¢ [2¢
Ky (tm, 3 tn, x) = - ; e on=smt/N % {cos( m y) cos< i x)
e 2¢ . 2¢
sin| {/ —y |sin{,/ —x
N N

1
o) L dxr e(“”'ﬂ"")kL {cos(yﬁ) COS(X\/X) + sin(yﬁ) sin(xﬁ)}

27 Jo \/X
1! 2

= — / du e cos(u(y — x)).
T Jo

In particular, when m = n, i.e., s, — s, = 0, the integration is readily performed to have

fol du cos(u(y — x)) =sin(y — x)/(y — x). Similar evaluation in N — oo can be done also
for (4.25) with m > n. O

In the bulk scaling limit (5.3), the temporally and spatially homogeneous infinite particle
system is obtained, whose multitime correlation functions are given by (5.4). The matrix-
kernel (5.5) is called the extended sine kernel in [96]. In the present paper, we will call it
simply “sine kernel”. The system with the sine kernel was studied by Spohn [88], Osada
[75, 76], and Nagao and Forrester [70], as an infinite particle limit of Dyson’s BM model
with 8 =2 [30]. See also [2, 96].

5.3 Soft-Edge Scaling Limit and Spatially Inhomogeneous Infinite System

Next we consider the scaling limit
t~N'"? and x~2N*° (5.7)

Since (5.7) gives x2/2t ~ 2N, the vicinity of the right edge of semicircle-shaped profile
(5.1) will be closed up, and we will obtain a spatially inhomogeneous infinite particle system
in this scaling limit. Following the random matrix theory [66], we call (5.7) the soft-edge
scaling limit.

In order to describe the limit, we introduce the Airy function

1 [ ;
Ai(x) = 5 / dl e/ (5.8)
—00

It is a solution of equation

2

d- . .
RAI(X) = xAi(x), 5.9
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which behaves as

Ai(x)~¥ex —%x3/2
S agmar TP\ T3 )

2 T .
e in x — o0.

1
Jax (3 4

In the proof of the following theorem, we will use the formula

Ai(—x) ~

Jim 21412, (JﬂJr %e*'“) =Ai(u) foru eR. (5.10)
Let
ay(s) =2N?3 +2N"3s — 52, (5.11)
and x y/(s) = (an(s) + x1,an(s) + x2, ..., an(s) + xy).

Theorem 5.2 For any M > 0, any sequence {N,,,}n[‘f:0 of positive integers, and any strictly
increasing sequence {s,,}_, of positive numbers

Jim oy (VY2 {2 001 N2 4 251, ey 1))t NP o 25 (i (san))

= det [ (S x5 50, 1]
1< <N, | <k<Ny,0<m,n<M J
_ ©). . . (M)
= pai(0, &y i1, 8y, - ismL 6y, ), (5.12)

where

0
/ dreS P Ai(y — M) Ai(x — 1) ift<s,
—00

K, y;s,x) = (5.13)

o0
—/ dre T AI(y — DAI(x —A)  ift > s.
0

Proof Putting k = N — p — 1 in the summation of (4.25) for m < n, we have
(N=1)/2 N-1 —p)2
t, 1 t, y X
K tn ) ;t) y X)= | — - —p— - —p— — ] .
i = () ﬁz(t> v (o) ot (G37)

With the same reason mentioned above (4.25), we can omit the factor (¢, /¢,)™~"/2. Since,
when we set t,, = N'/3 + 2s,,,,

ay(sy) +x VN | 1
S 2N+ — NV L (NP,
2 V2 ( )

we can use the formula (5.10);
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(i) 2o (7 )
1
= ON-—p-1 (\/2(1\’ pP— 1 7

~ Dl/AN=1/12 74 (x +

—p—1)e {x+N1/3})

N1/3>
For

B 13 —p/N/3
7" (125NN mspNB
. = 1525, /N1A o e TP in N — oo,
m m

we have

Ky (N3 +25,, an(s,m) + y; N2 + 25, an (s,) + x)

N—1
1 (e /3 . p . p
~ (Sn—sm)p/N
N3 Ze r A1(y+Nl/3)A1<x+ N1/3)
p=0

oo
~ f due™ =" Ai(y + u)Ai(x +u) in N — oo.
0

Note that the factor (t,/t,,) Y ~"/2, which is irrelevant in calculating determinants, was omit-
ted in the second line in the above equations. Put u = —A to obtain the expression (5.13).
Similar evaluation in N — oo of (4.25) can be done also for m > n. O

The infinite system obtained by the soft-edge scaling limit (5.7) is temporally homo-
geneous, but spatially inhomogeneous as shown by the “Airy kernel” (5.13). Prahofer and
Spohn [78] and Johansson [46] studied the right-most path in the present system and called
it the Airy process A(t). For a given ¢t > 0, A(¢) has distribution of the celebrated Tracy—
Widom distribution, which is governed by the Painlevé II equation [94]. Recently Tracy
and Widom derived a system of partial differential equations (PDE), which govern the Airy
kernel (5.13) [95]. They also discussed other determinantal processes by PDE [96]. See
also [1, 2].

6 Determinantal Processes Associated with Spectral Projections

6.1 Spectral Projections

First we note that, following the notations in Sect. 2, if we set T =logt, " =logt’, ¢ =
y//2t, ¢ = x /21, and Ky (t, y; s, x)dy = Ry (z, ¢3¢/, ¢)d¢ with d¢ —dy/«/_ the
matrix-kernel of the determinantal process of noncolliding BM with finite number of parti-
cles N < oo given by (4.25) is rewritten as

= =R P, 1) ift <t/
Ry, eiv, 0=l = 6.1
v e) { (cle = Re (1~ Pl if 7 ©
where ﬁw is given by (2.12), and P,, is a projection operator defined by
Py= ) kL. 6.2)
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It is called the extended Hermite kernel in [96].
The trigonometric functions of the form

S_ («/—x) \/_ o sm(\/_x)

S+(«/—x) cos(«/—x)

/2 \1/4

can be regarded as the generalized eigenfunctions of the Hamiltonian

82
Hain = — e (6.3)

with spectrum A > 0. Here S_ is an odd function (parlty p=—)and S+ is an even function
(parity p = +), respectively. Consider an operator Hsm such that (x|Hsm|y) =8(x — y)Hsin
with (6.3) and introduce a set of its eigenvectors {|A, p; sin) : A > 0, p = £};

Hanl%, ps sin) = A2, p; sin).
Since (x|, p; sin) = (A; p; sin|x) = Sp(\/Xx), we can confirm the completeness of the set

Z/md)\ (x|, p; sin) (A, p; sin|y) = 1 /OO du cos(u(x —y)) =8(x — ).
— 27

—0Q

If we change the variable in the Airy differential equation (5.9) by x — u — A, we have
d2
———Ai(x — 1) + xAi(x — 1) = LAi(x — ).
dx?
That is, the Hamiltonian
82
Hai = —@ +x (6.4)
has R as spectrum and the Airy functions of the form Ai(x —A) are its generalized eigenfunc-
tions. We can consider the corresponding operator H; and its eigenvectors {|A; Ai) : A € R},
Hailh; Ai) = A1 Ai),
where (x|1; Ai) = (A; Ai|x) = Ai(x — A). We find the completeness
(o] oo
/ dX) (x|A; Al)(A; Ally) = / d) Ai(x — VAI(y — 1) =68(x — ).

oo o]

Remark 3 The 2(v + 1)-dimensional squared Bessel process (BESQ,) Y™ (¢) is defined as
a solution of the SDE

dYM () =2/ Y ()dB(t) +2(v + Ddt, v > —1, (6.5)

where B(t) is a one-dimensional standard BM [18, 80]. Its forward and backward Kol-
mogorov (Fokker—Planck) equations are given as

] 02 ad
Eu(t,x)=2xﬁu(t,x):|:2(v:|:1)£u(t,x), (6.6)
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where — for the forward and + for the backward equations, respectively. We will see that the
Laguerre polynomials {L} (x)} play for BESQ, the similar role to the Hermite polynomials
{Hi(x)} for the BM shown in Sect. 2. By considering the noncolliding system of BESQ,s
instead of BMs [59], we can derive a finite determinantal process whose matrix-kernel is
described using the orthonormal Laguerre functions (extended Laguerre kernel [96]). If we
take the so-called hard-edge scaling limit, a spatially inhomogeneous infinite particle system
is obtained, which is the determinantal process associated with the matrix-kernel

1
/ dr e“ % J,(2\/Ay) 1, 2v/hx) ifr <s,
0
KO,y s,0) = | DOVIVELCVD) = FLQYDLRVD )
y—x
- f ocd)\e‘("mj,,(Z\/E)Ju(Zx/E) ift > s,
1

where J, (x) is the Bessel function, J,(x) = o2 ,(—1)" x/2)"+ /{T(n+ DI (n+1+v)},
and J)(x) = dJ,(x)/dx. This kernel was called the extended Bessel kernel in [96]. See
also [57, 76, 96, 98]. We can see that J,(2+/Ax) is the generalized eigenfunction of the
Hamiltonian

R N (6.8)
T Bxx8x 4x’ ’

with spectrum A > 0. We introduce the corresponding operator H, and its eigenvectors
{12 ) 1A =0}, Hy A J) = A|As J), where (x[Hy|y) =8(x — y)Hy, (x[A J) = (& J|x) =
J,(2+4/Ax) with the completeness

fooduxm Iy T1y) = /°°duv<wmmm) = 50— ).
0 0

Here we note the fact that the sine kernel K given by (5.5), the Airy kernel K given by
(5.13), and the liessel kernel given by (6.7) are expressed in the same way as (6.1) for the
Hermite kernel Ky,

(y|e(5_t)ﬁ73|x) ift <s,
K, y;s,x)= R
— (eI —P)|x) ifr >,

if we assign the Hamiltonian §(x — y)H = (x|ﬁ |y) and projection operator as follows in-
stead of H,, and (6.2);

1
(i) For the sine kernel, set H = H,;, with (6.3) and Py, = Z/ dX\ |\, p; sin) (A, p; sin].
p=t"0

0
(ii) For the Airy kernel, set H = H; with (6.4) and Pa; = / dA|A; Al)(A; Aldl.

o0

1
(iii) For the Bessel kernel, set H = H; with (6.8) and P; = / drx; Ty (h J|.
0
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6.2 Effective Hamiltonians and Matrix-Kernels

In the previous subsection, we claimed that the structure of the matrix-kernel of determinan-
tal correlation functions is common both in finite particle systems and infinite particle sys-
tems. It should be noted, however, that even from the same finite system (e.g. noncolliding
BM governed by the Hamiltonian H,,), depending on scaling limits, different kinds of infi-
nite determinantal systems are derived, in which the Hamiltonian is replaced by appropriate
effective Hamiltonians (e.g. Hgin and H ;) and spectral projection operator is modified.

In the present subsection, we give a possible general consideration on the common struc-
ture of determinantal processes. First we note the following fact for a general form of ef-
fective Hamiltonian H = —a(x)3%/0x% — b(x)d/dx — c(x), where a(x), b(x), c(x) are suf-
ficiently smooth functions with a(x) # 0 in an interval A C R. If we change the variable
x — z following

z(x) :/ a(y)~'*dy,
0

H—> H = —32/87% — E(z)a/az — ¢(z) with E(z(x)) = a7’ (x) + b(x)7(x) =
a(x)""2{—a'(x)/2 + b(x)}. Then we define

r(z)= eXp:—% /ZE(u)du}
0

and if we perform a similarity transformation H — H = r~'Hr, the term of first derivative
can be eliminated and we have the form H = —32/9z% + ¢(z). The transformation H —
'H is called the Liouville transformation. Then, without loss of generality, we can assume
effective Hamiltonians of the form (the Sturm—Liouville operator [93])

2

H=——
0x2

+q(x) (6.9)
defined on A C R.

Example 1 The effective Hamiltonians H,, Hsin, Hai, and H; are transformed to the form
(6.9) with the following g (x), respectively

1

N 21
qx): 16()6 4), 0, «x, (v 4)

%, (6.10)
where A = R for the first three cases and A = R, = {x € R: x > 0} for the last case.
Let 7 be the operator corresponding to (6.9); (xlﬁl y) =8(x — y)H, and define
8,(x, ) =8y, %) = (yle” " |x). ©6.11)

By definition, it solves the equation

d

5& (x,y) =—Hs(x,y) (6.12)
with

1irr(1)8,(x,y):8(x—y). (6.13)

t—
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Assume that 7 has a distribution w(d\) of spectrum o(ﬁ) ={1: ﬁlk) = A|A)} with the
complete set of eigenvectors {|1) : A € o (H)}. Then the spectral representation of &, (x, y) is
given by

e =l ™ [ @i
o(H)
= / w(dN)e ™ ; (x) D (y)
0(7"2)
with @, (x) = (x|A) = (A|x). We assume that
IC>0 st / dy (x —y)*8,(x,y) <Cr?, te(0,1], "x €A, (6.14)
A
where C does not depend of 7.

Example 2 For the four examples (6.10), we have the following explicit expressions of
8 (x, ¥);

q(x)= 1i6()c2 —4);
e =320 () ()

b el Y yreom (L) L ‘
_zmexp{ 8(x y) COth(z) 4xytanh(4>},

x,ye A=R,

q(x)=0:

S ~
ACREDY / di (yle”"™n |, p; sim) (. p: sinlx)
p=+ 0

1 / ” d—);e_*’{COS(«/XX) cos(v/Ay) + sin(v/Ax) sin(v/2y)}
0

o VA
1 [ 2t
= — due ™" cos(u(x —y))
T Jo
1 (x—y)z}
= Xxpy—— ¢, x,yeA=R,
4t p: 4t Y

q(x)=x:

S:(x,y) = / ” Ai(x — VDAi(y — M)e MdA

[e°]

1 {(x—y)2 t(x+y) 1
exp{— - —

, Xx,yeA=R,
Jant 4t 2 12} Y
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1\ 1
qg(x)= (V - Z)F

Si(x,y) = %/0 VE I (V) Sy I (Vay)e M d

VY ey 4 ( Y
=Y "0 I, ), v>-—1,x,ye A=R,,
2 2 Y *

where [,(z) is the modified Bessel function given by [,(z) = ZEO:O(Z/ 2)2ntv
{n!T'(v+n + 1)}. We can confirm that (6.14) is satisfied in these four cases.

Now we consider a subset of spectrum G(H) o_ (H) ={re O'(H) A < X} with a spec-
ified level A, € o (H) and define the projection operator onto o_ (H)

P:/ _ w(dL)[A) (Al (6.15)
o_(H)
so that
G,(x.y) = G/(y.x) = (y]e'™Plx),
—_ _ ~ (6.16)
Gi(x,y)=Gi(y,x)=—(yle”" (1 = P)|x),
and
K(xay)=tlij;%gt(xvy)=}ij>%g—t(x!y)=<y|P|x>a (617)
px) = K(x,x)=(x|P|x). (6.18)
By definition
Gi(x, ) =G (x,y) = 8 (x, ), (6.19)
0
Egr(xv ¥) =HG (x,y),
5 (6.20)
ggt(-xa )’) = _Hgf(-x7 y);
and
92 92 92
}i_r)r(l)a—yzgf(x,y) 1m5ﬁg ((x,y)= —K(x y). (6.21)

Moreover, by the completeness of {|x) : x € A}, f A dx|x){x| =1, we have the relations
/ dyé(x, )G (y, x) = p(x), (6.22)
A
/ dyd;(x,y)G(y,2) = K(x,2). (6.23)
A
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We define matrix-kernel K by

Go—i(y,x) ift <s,
K, y;s,x)=19 (6.24)
Gi—s(y,x) ift>s,

and consider the determinantal process E (1) = {X(#)}, whose multitime correlation function
is given by
0,61, 6: ity £ = det K (ty, x™ 5 1y, x 6.25

POEG: L&Y i) = det K ()] (629)
for any M > 0, any sequence {N,,})_ of positive integers, and any series of observation
times 0 <t; <--- <fty.

The invariant measure of the process is the determinantal point field p associated with
K (x,y) given by (6.17).

The two-time correlation function p (0, {x,}; ¢, {y,}) of the system is given by

p O, {x,}; 1, {y,) = detM(, y,|x,,), t>0,mn>0,

where
p(x1) o KO xm) Gixny) oo Gi(x, v
K@, x1,) -+ Ko, xm)  Gi(xa,y0) -+ Gi(x2, y0)
eV 3 K(xmsxl) P(Xm) gt(xm,yl) gt(xmvyn)
M =1 = — . 2
CR=LG 6oy o Gona e e Koo |0 @29
G(x) o G2, xwm) K2, y1) -+ K(y2,y)
G x)) o GO X)) Kuoy) o+ p()

For a matrix A = (a;j)ies,je; With index sets I, J, we denote its submatrix as Ay =
(aij)icr jey for I' € I, J' C J, and the complementary submatrix as A" = (a;;)ien s jes\sr-
By using the relation (6.19), p(0, {x,,}; t, {y,}) is expanded as

PO, {xn}i 2. {y,}) = detM(z, y, |x)

mAn

" Z Z Z (_1)[+Zle(ﬂ;+m+hi)

=1 1<aj<--<ap<m 1<b;<---<by<n

x detD(t, ¥, 1% ) (a,)i5,) detM(2, y,,|x,,) " Hoeed - (6.27)

where
o(x1) o K&, xm) GG,y o0 Ge(xp, yn)
K(x,x1) -+ K@,xm)  G(x2,y1) -+ Gr(x2,yn)
_ K(xpm,x1) - o (Xm) Gr(xmsy1) -+ Gr(xm, yn)
M yalem) =16 (012D Gatam)  pGD o K1 ym)
Gty x1) o G2, xm)  K(¥2.y1) -+ K(y2,yn)
GtOn-x1) - Gt Onxm) KQu,y1) - p(n)

D@, yulxm) = 0 (xXis Y ) 1<i<m,1<j<n-
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It was shown by Shirai and Takahashi [84] that the Palm measure ©* coincides with the
determinantal point field associated with the kernel K< defined by

Z — K()C, )’) K(xv Z)
Ken=xeo et(K(z, v KG, z)) '
Note that
1
P ({xm})) = ——p{x,} U{z}). (6.28)
p(2)
For f, g € Co(R), let
(f,E) =) f(x) and (g.m) =) g0y, (6.29)
xeé yen

and set , B € C. Define F(£) = e*5), G(&) = ¢#'¢¥). Then the two-time generating func-
tion is defined by

@,(f, g, B) = E[F (EO)G(E(1)] = B[ 3O FES00] (630)
for t > 0. Let
X1 =0 —1, () =€V 1,

then we can see

D (f, 8 B)

oo o0 1 m n
DI fA dy, ]1_:[lxl<x,-)£[lm(yk>p(o, alito D). (63D)

m=0 n=0

7 Characterization of Determinantal Processes

In the previous section, we introduced a class of determinantal processes associated with
spectral projections defined by effective Hamiltonians. Here we give properties of determi-
nantal processes of this class, which can be derived from the common structure of correlation
functions.

7.1 Continuity

Let C3°(R) be the set of all infinitely differentiable real functions with compact supports
and set (f,&) = ers fx) for f e CP(R), § € X. By a criterion of Kolmogorov (see, for
example, [12, 47]), the following lemma implies that ers(r) f(x) is continuous in time
with probability one for any f € C§°(R). Since X is separable with the vague topology, we
can choose a countable set { f j}?il C C;°(R) such that £, — £ in n — oo on X if and only
if (§,, f;) = (&, f;) inn — oo, Vj > 1. Then it implies that the determinantal process Z (t)
is continuous in the vague topology with probability one. That is, if the condition (6.14) is
satisfied, it can be expressed by

o0
E(t) = Zan(t)
j=1
with some real-valued continuous processes X ;(¢), j € N.
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Lemma 7.1 Let E(t) be the determinantal process, whose multitime correlation functions
are given by (6.25) with (6.16) and (6.24) associated with an effective Hamiltonian (6.9)
defined on A C R. Assume that (6.14) is satisfied. Then for any f € C{°(R)

E[[(f. E®) — (£, EO)*1 = C*, te(0,1], (7.1)

where C does not depend on t.

Remark 4 Theorems 5.1 and 5.2 are the limit theorems of the processes

ENN() = {X1(N+20),.... Xy(N +20)} = (),

EVE(O) =X (N 20 —an(0), ..., Xy(N' +20) —ay ()} = EN@), N — o0
with ay(¢) defined by (5.11), in the sense of finite-dimensional distributions, where the
multitime correlation functions of E*"(¢) and EAi(¢) are given by pgy of (5.4) and pa; of
. 12) respectlvely When we apply this lemma to the N-particle system of noncolhdlng
BM, EX (), which is a determinantal process associated with the Hermite kernel Ky given

by (6. 1) C depends on N. Careful estimation gives an upper bound on C, which is uniform
in N, and tightness is established both in {""’“”‘(t)}NeN and {E ()} ven-

Proof of Lemma 7.1 Here we use the notation

p/n,n(xln+n) = p(O, {xl, cees xm}; z, {xm+ls cees xm+/1})~

The left-hand-side of (7.1) is given by 3*®,(— f, f; &, @)/d*x|4—o from the two-time gen-
erating function given by (6.30) and (6.31), which equals

4

/ dxy [ [ £O){pa0(xa) = 4p31(xa) + 6p22(x4) — 4p1 3(Xa) + po.4 (X))

i=1

3 3
+ / Jdxs [T e {22 SO 3.0(x3) +6(—f(x1) = f(x2) + f(x3))p2.1(x3)
A i=1 j=1

3
+6(f(x1) — f(x2) — f(x3)p12(x3) + 22 f(xj)00.3(x3)}

j=1

+/ dx; Hf(x QL) 43 (0) f(x2) + 21 (22)°) (02,0(%2) + po2(¥2))

i=1

+ (4 f () +6f(x1) f(x2) —4f(x2)*)p1.1(x2)} +/ dxif () {p1o(x1) + po1 (x1)}-
A

Since p3,0(x1, X2, X3) = 00,3(x1, X2, X3), P2,1(X1, X2, X3) = p1,2(x3, X2, X1), etc., the above

@ Springer



J Stat Phys (2007) 129: 1233-1277 1265

quantity is twice of

4
1= [ ax TG0 prate) — 40310 + 3p22x0)
A i=1

3 3
+ / dxs [ £ [22 FO)P30(x3) +6(—f(x1) = f(x2) + f(x3)) 21 (x3)
A3 i=1

j=1

2
+ / Jdxa [[FEHQ@F ) +3F () f () +2f ()" pao(x2)
A

i=1

+ (=2f )+ 3 () f(x2) = 2 £ (x2)?) pr1 (x2)}
+/ dxi f(x1)*p1o(x1).
A

We pllt Mm,n(xm+n)=M(ta X1y ey xm-Hllxl ----- xm)’ D(xn)=D(t» xnl-xn) and

Dy 1(x2) = =8, (x2, x1)G; (x1, x2),
2
Dy1(x3) = Z(— )38, (x3, x;) det My (x3) I,

i=l

3
D3 1(x4) = Z(—l)i+48,(x4, x;) det M g (xc4) 1
im1
2 4

Dy a(x4) = ZZ(—I)"H&(XJ-, x;) det M 5 (x4) 9110,

i=1 j=3

ﬁ2,2(364) = detD(x4)(3.4)01.2) det My 5 (x4) B #1121
From (6.27) we have

p1o(x1) = detM; o(x1),

p1.1(x2) = detM; 1 (x2) — Dy 1(x2),
p2,1(x3) = detMy 1 (x3) — D2 1(x3),
p3,1(x4) = detM3 1 (x4) — D3 1(x4),

22(x4) = detMa 5 (x4) — Dy a(x4) + Dao(x4).

We divide I into four terms I = >}

j=1 Ij with

I= / dx1 f(r)* det My o (x1)
A

2
—/ dx, ]_[f(xi)(—zf()n)2 +3f (1) f(x2) = 2f (x2)*)Dy 1 (x2),
A2 i=1
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2
L= /2dx2 l_[f(xi){(zf(xl)z +3£(x1) f(x2) +2f (x2)?) detMy o (x2)
A i=1

+ (2 0e)® 3£ () f (x2) = 2 (x2)*) det M 1 (x2)}

3
—/ dxs [ [ Fx)6(—f(x1) = f(x2) + f (x3))D2.1(x3)
A3 i=1

4
+/ dxy l_[f(xi)3ﬁz,2(x4),
A4

i=1

3 3
h= [ ar Hf(x»{ZZf(xj)detMg,o(x3)
A3 i=1 j=1
+6(—f(x1) — f(x2) + f(x3)) detMy,1 (x3)
4
~ [ dxs [T FG-4Ds.1(x0) + 32t
A i=1

4
I = / ey T o) [det My o) — 4detMy y e0) +3det My 5 xc0).
A

i=1

Using (6.22) we have
I = —2/1\2f(xl)f(x2)3g,(x1,xz)B,(xl,xz)dxldxz
-2 /A 2 F)? £ )G (x1, x2)8, (x1, x2)dx1dx,
+3fA2 F)? f(x2)*Gi (x1, x2)8; (x1, x2)dx1dxy
+ [ retptdn

1
=3 /z{f(xl) — F)}* G (x1, x2)8, (x1, x2)dx1dxy.
A
By the assumption (6.14) we have
L=Cr?, 1e(0.1],

where C; does not depend on ¢.
Since G, (x, y) = K (x, y) + 3G, (x, ¥)/t|,—o t + O(t?), we have for any k, £ € N

det My ¢ (xiqe) = det My_ o4 (Xipe) + O@).
Then

Ij=1~j+0(t2), j=273747
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where

2
b= [ dxa [ FG6f G (x) detMaote
A i=1
3
- /3 dxs [ [ £x)6(—f(x1) = f(x2) + f(x3))D2 1 (x3)
A i=1
4 o~
+ [ dx [T re03Baaten.
At i=1

4
L= —/ dx, l_[f(xi){_4D3,l(x4) +3Ds5(x4)},
A4

i=1
and f4 = 0. Since the estimate (7.2) was obtained, it is enough to show that
[;<C;i*, te(0,1], j=2,3 (7.3)

for the proof, where C;’s do not depend on ¢. Using (6.22) and (6.23), we obtain

iz:/. dX4
A4

+3 () fx2) f(x3) f(x4)

Gi(x4,x1)  Gi(x4,x2)
Gi(x3,x1)  Gi(x3,x2)

{6f(x1)2f(x2)28, (x1,x4)8; (x2, x3)

8 (x4, x1) 8 (x4, x2)
8 (x3,x1)  8;(x3,x2)

8 (x4, x1) 8 (x4, x2)
8 (x3,x1)  8(x3,x2)

+ 6.1 (1) f(x2) f(x3) (= f (x1) = f(x2) + f(x3))

= f dX4
A4

Fxa) = f) f ) {f (1) f )+ f(3) f (xa) =2 (01) £ (x3) = 2f (x2) f (x3) +2f (x3)°)}.

}

Gi(x4,x1)  Gr(x4, x2)
Gi(x3,x1) Gi(x3,x2)

8 (x4, x1)  8; (x4, x2)

3F(xy),
8 x1) 8 Crsxn) | T )

where

By simple calculation we see that

F(xy, x2, X3, x4) + F(x1, X2, X4, X3) + F(x3, X4, X1, X2) + F(x3, X4, X2, X1)
==2(f(x1) = f3))(f (x3) = fF2))(f (x2) — fxa))(f (xa) — f(x1)).

Then

/ dX4
A4

= //\4 dx48; (x4, x1)8; (x3, x2) (f (x1) — f(xa))(f (x2) — f(x3))

Gi(x4,x1)  Gi(x4,%2)

8 (x4, x1)  8: (x4, x2)
Gi(x3,x1)  Gi(x3,x2) Flxa)

8 (x3,x1)  8:(x3, x2)

Gi(x4,x1)  Gi(x4,x2)

g ) G |00 = FE(f ) = ()
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= /M dxy 8,(x4, x1)8,(x3, x2) (f (x1) — f(xa))(f (x2) — f(x3))
X {(Gi (x4, x1)G; (X3, x2) — G, (X1, x2) Gy (x3, X4)) (f (x1) — f(xa)) (f (x2) — f(x3))

— G (x4, x1)G1 (x3, X2) (f (1) f (xa) + f (x2) f(x3))
+ G (x2, x4)G; (x1, x3) (f (x1) f(x4) + f(x2) f(x3))}

_ / A48, (g, 3008, (s, x2) (£ (1) — F ) (F(2) — £ ()
A4

X {(G; (x4, x1)Gr (x3, X2) — Gr (X1, %2) G (x3, X4)) (f (x1) — f(xa)) (f (x2) — f(x3))
+ (G (62, x4) Gy (x1, x3) — Gy (%2, X1) G (X4, X3)) (f (x1) f (xa) + [ (x2) f(x3))}

_ / dxy (s, 3008, (6302 (£ (1) — £ (f (62) — £(x3))
A4

X |:(gt(x47xl)gt(-x3a X2) — Gr(x1, X2)G; (x3, Xx4)) (f (x1) — f(xa))(f (x2) — f(x3))

2

0 d
+ <_gt(xl’x2)_gt(xl,x2)_gz(xbxl) g/(xlax2)>
8x1 d

X2 3x1 3.762

X (f Qo) f(xa) + f(x2) f(x3)) (xq — x1)(x3 —Xz)] +O(t).

By the assumption (6.14) we obtain (7.3) for j = 2.
Since

(—D)'8, (x1, x4) det Mz 1 (x1, X2, X3, x4) 114
= (=18, (x2, x4) det M3 1 (x2, X1, X3, x4) 24
= (—1)*8,(x3, x4) det M3 ; (x3, X2, x1, x4) P14,
(= 1), (x1, x4) det My 5 (x1, x2, X3, x4)
= (=138, (x1, x3) det My 5 (x1, X2, xq, x3) 115
= (= 1), (x2, x3) det My 5 (x2, X1, x4, x3) 2P

= (— 1)2+48t ()Cz, X4) det MZ,Z(XZ, X1, X3, x4)(2}{4) ,

we have

K, x1)  plx2) K(x,x3)
K(x3,x1) K(x3,x2) p(x3)
Gi(x4,x1)  Gi(x4,%2) Gy (x4, x3)

} |

Then we have (7.3) for j = 3. This completes the proof. |

4
L= 12/ dxy [ ] £ @8 (xix) {—
At i=1

K (x2, x1) px2)  G_(x2,x3)
Gi(x3,x1)  Gi(x3,x2) p(x3)
Gi(x4,x1)  Gi(x4,x2)  K(x4,x3)

+
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7.2 Bilinear Forms

Since the Fredholm determinant of the dual operator coincides with that of the original
operator, the reversibility (and also the stationarity) of the present determinantal processes
is guaranteed.

Osada constructed X-valued reversible processes, which have determinantal point fields
as their reversible stationary measures by Dirichlet form approach. With the Palm measure
u* the Dirichlet form of Osada can be written as

d d
E(F,G) = / dzp(2) f W) S F (1) U= G ({2 U (7.4)
A x 4 0z

for local smooth functions F, G [76] (see also [88]). By the general theory of Dirichlet
forms [38], his processes are diffusion processes (i.e., continuous strong Markov processes).
For our class of determinantal processes, we found the following fact (Proposition 7.2). It
suggests that our determinantal processes are identified with Osada’s processes.

A function F on the configuration space X is said to be polynomial, if it is written
of the form F (&) = f((fl,é), (f2,&),..., {fx,&)) with a polynomial function F on R,
k € No, where f; € Ci°(R), 1 < j <k. Let p be the set of all polynomial functions on X,
which is a dense subset of L2(X, u); the space of square integrable functions on X with the
determinantal point field .

Proposition 7.2 Let E(t) be the determinantal process, whose multitime correlation func-
tions are given by (6.25). Then for F, G € g we have

d
—EE[F(E(O)G(EU))] =&(F, G), (71.5)
t=0
where £ is given by (7.4).
Markov property of determinantal processes has been studied by Borodin and Olshanski
[14, 16]. But we can not prove that the infinite determinantal processes in our class are

Markovian. The equivalence between our processes and Osada’s is not yet established.
To show this proposition, it is enough to consider the case that F' and G are of the form

k k
F(&) = exp(Zam mem), G(®) =exp<2 B ngm)

m=1 xe& m=1 xe&
with k € Ny, @y, Bn € R, fu,8n € CFR),1 < m < k. Then if we set x;(x) =
exp(Y_; o fu (X)) — 1 and xo(x) = exp(Xh_; Bug (X)) — 1,

FEO=[]0+x@),  GE& =[]0+ x0).

xe& xeé

The left-hand-side of (7.5) equals

d
_Eq)t({fm}v {gm}, {am}s {ﬂm})

t=0

o0 o0 1 m n 8
=22 - fA dx fA dy jlz[lxl(xj)!:[lm(mw(o, EMIATS)

m=0 n=0 t=0
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Since the Palm measure u° is a determinantal point field associated with p*({x,}) (see
(6.28)) the right-hand-side of (7.5) equals

0 0
/ dzp(z) XI(Z) Xz(Z) | wanFmGam

0 0
/d 2(2) X1(Z) X;Z(Z)

x Z / dxp, H{xl(x,)Xz(x,) + 01 () + X2 ()} ().

mO j=1

Hence Proposition 7.2 can be derived from the following lemma.

Lemma 7.3 For any m,n € N we have

) m n 8
tim [ dx, [ ay, [T [Te00 500, tabit. )
o am A" =1 k=1

__mf m!n! /d ( )axl(z) 3%2(2)
- =1 m—=0'n—0!1—-D!J, zp(2 > o

m—~

x / dx,— / dy,_ / dwz1Hm(x,)]"[m(yk)]'[xl(w,)m(w)
Am—(’ An—[ A

i=1

X P ({xm-e} ULy, ¢} U{we}).

Proof of Lemma 7.3 We use the expansion formula (6.27) of the two-time correlation func-
tion to calculate the integral

I=/ dxm/ dy, [ [0 [ [ 20900, fxn; 1, {3, h-
AT AT i=1 j=1

By permutation invariance of the integrand we puta; =m —£+i,b; =i withi =1,2,..., ¢,
and then

1= [ axn [y, [Toeo [Taeo)dead y,lx)
m AN izl =
+Z( )( )/ dxm/ dynl"[xl(x,)l"[m(yj
AIV[

x detD(t, ¥, |% ) tag)ip,) detM(, y,,|x,,) " Hoelad)

= / dx,, / dy, [ [xieo [ [ xavj) detMz, y, %)
m Al i=1 j:l

mAn

dx,, d
+;e'(m e)'(n—@'/m * fA I

x me,)]'[m(y/)]'[a Cm—t 46> Vi) X det My (X3 3,),

i=1 j=1 k=1
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where M¢ (x5 y,) = M(t, y, |x ) HLm+8im=t+L..m} By ysing (6.13), (6.17), (6.20) and
(6.21), we see that

) 8 m n
lim —— f dx,, / dy, [ T [ e detMa. y, lx,) =o0. (7.6)
- A A i=1 j=1

From (6.12) and (6.20)

9 m n 4
— | dx, / dy, [ [xio [ [0 [ 8 Gt 1) det M (i 3,)
AlVl An

ot izl =1 k=1

4 m n
82
=5 f dx,, f dy, [ [ [ [ 20 58 Comrpr )
el m AN i1 i1 8y1?

¢
< T 8 Gm-erir yi) det M (x5 y,)
k=1,k#p
m—{ m n 4
+Zf dxm/ dy, [ [ G [ [ e [ [ Comrars y0)
p=17A" An i=1 =1 k=1
K(xi,x1) - 0 s K(xer, Xm—e) Gi(xt,y1) -+ Gi(x1, yn)
K (x2, x1) 0 : K (x2, Xm—¢) Gi(x2,y1) -+ Gi(x2, yn)
K (xp, x1) 0 K Coms Xm—e) gi(xmvyl) gl(xmvyn)
xdet| g (uprox) o 02, G- Ger1xp) o GorOestoin—t) KGeeroy) o K(ert.m)
Gt Oer,x) oo 02,,G ey, xp) o G ey, xmee)  Ker2, 3 o+ K(yeya, ya)
GoyGmox) - 026G Gwxp) o G Owxmee)  KGuy) o K yn)
n m n 4
-> / dx,, f dy, [ [0G) [ [ e [ T8 Conr4x> v0)
p=174" An i=1 =1 k=1
K@ix) - KGnxe—o) Gy o 9 Gy o Gl
K(xz,x1) -+ K(x2,Xm—¢) Gr(x2,y1) -+~ afl,gz(xz,,vp) s Gr(x2, ym)
xdet| K@woxD 0 KGwoxm—o)  GlowmyD) oo 85 GiGmyp) o Gr(m vn)
Gor(est1,x1) o G Vet Xm—e)  K(Ver1, 1) - 0 co K(yett, yn)
Gt (es2,x1) o G (Ve Xm—e)  K(yer2,y1) - 0 wo K(yet2, yn)
GotOnsx1) o Gt Xm—e)  KQuy1) o 0 oo Ky yn)
=1L+ L) — L), (7.7

where we have used the abbreviation 3; = 8*/9y*. By partial integration

¢ m n 14
HOED /A dxy, /A dy, [ [T o] T8 0mcw 0
p=1 i=1 k=1

j=Lj#p
32 .
x ——{x2(yp) detM; (xn: y,)}
ays;

i=1 p

14 m n 4
82
=) / dx,, f dyn]_[xloci)]"[m(yj)l'[&(xWM,y»Wdeth(xm;yn)
p=17A" Ar =1 k=1
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¢ m R .
2 fmd"m /Mdynl_[mm) [T o) []8 e w0
p=1 i=1 k=1

j=Lj#p

> detM!(x,; y,) +2
Yp

=1+ 1In(@).

x { 82X2(yp) 8X2(yp) adeth(xm; yn) }

ayp 3)’1)

By simple calculation

In(0) + L) — L)

4 m n 14
=Z/ dxm/ dy, [ TG [ [raGp) [ T8 Com—raxs y0)
p=174" Ar i=1 j=1 k=1

K (x1,x1) K(xp,xm—g) Gr(x1,y1) - 0
K(xp,x1) 0 K(,Xm—g) Gr(x.y1) - 0
Kxm,x1) - KQom, Xpm—g) Gr(m.y1) o 0
xdet | Gortvpprxn) o GorOertam—) KOerrv) - 83, K0e1.7p)
G-1Geg2:x1) o Gt Opg2:%m—p)  KQpg2.50) - apr(sz,yp)
GoiGmx) - GotOnxm—e)  KOnoy) - 35,KGm.yp)

m—{

m n 4
+ / dxmf dy, [ TG [ [ [ T8 Conresxs y0)
AT A" i=1 j=1 k=1

p=1
K(xy,x1) - 0 s K, xm—g) Gy (x1,1)
K(xp,x1) - 0 s K2, xm—g) Gi(x2,y1)
K (xm, x1) 0 K (x> Xm—e) G (X, y1)
xdet| G (yerox) - 92, G es1,xp) o G et Xme) K (er, y1)
Gor ey X)) o 0%, G (vera, xp) o G (e, Xm-e) K (yey2, y1)
Goiuox) o RGOwxp) o GO X)) KO y1)
n m n Ja
-y [ dx,, / dy, [ [xaGo [ [reGp [ [ 8 Conrars y0)
p=t+1Y4A" A7 i=1 j=1 k=1
KGi,x) - K@iom—e) Gy oo 93 Gi(xi, yp)
K(xp,x1) oo K(x2, Xm—) Gixa,yD) oo 85 Gi(x2. yp)
sdet| KGmox) o KGwoxw—) GG, y1) - 35 GrGom, ¥p)
Gt (ert,x1) 0 G etr, Xm—e)  K(Yey1, 1) 0
G-r(yer2.x1) - Gt o2, Xm—e)  K(yew2, 1) -+ 0
Gt (Yn> x1) Gt Vs Xm—t) K (yn, y1) 0

By using (6.13) and (6.21) we have

tliga{ln(t) + L) — L)} =0.
Suppose that x,,_¢y; = y;, i =1,2,...¢,

deth(xm; y,,) - p({xm—l} ) {yn})!

ddetMt(x,: y,) N 1op({xm—e} Uiy, D
ayp 2 ayp

int—0

@ Springer

Gr(x1, yn)
Gi(x2, yn)

Gt (Xm, yn)
K(et1,yn)
K(}'[Jrz, yn)

Kn,yn)

Gr(x1, yn)
Gi(x2, yn)

Gt (Xms yn)
K (yet1, yn)

K(ye+2, yn)

K (ns yn)

G (x1, yn)
Gi(x2, yn)

Gt (Xms Yn)

K()"H»l 2 Yn)
K (yes2, yn)

K, yn)

(7.8)
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forany p=1,2,...,£. Hence we have
m—~
lim ,5(1) = Z f dx s / 3. T [T 00000 [T 00
mt k=1,ksp j=t+1
" x2(yp) Ix2(yp) ap({xm—e} U{y,})
x xl(y,»{#p({xm_z}uunm — -
dy A ayp

¢ m—t
:Z/Am_l dxm,(/ dynl_[)(l(xz) 1_[ X1 () X2 () ]_[ x2(y))
p=1

k=1ksp j=t+1

0 [0
X X (y”)ﬁ{ Xaziy 2 () U {y,,})}
)4 14
=—Z / dx, / dy,,]‘[xl(x) H 5 O X2 (%) H x()
= Jamt k=1.k#p j=t+1

3 a
Xl()’ﬁ) XZ(yp) p{xm_e}U{y,D

dyp ayp
—K/ dxm [/dZ/ dwz 1/ dynfe
Am—Lt
m—L{
< []xitx )Hxl(ykm(yk) l'[m(w,
i=1 k=1 j=1

9x1(2) 3x2(2)
X

pUxm—} U{z}U{we 1} U{y, D

0z 0z
0x1(2) 9xa(z
/d (2) X1() X2(2) dxm%/ de/ dy._,
3Z Am—Lt A1 An—t
m—~e -1
x Hxl(x)F[xl(yk)m(yk)l"[m(w,)p (e} U lwe_1} ULy, (). (7.9)
i=1 k=1 j=1
Combining (7.6), (7.7), (7.8) and (7.9), we obtain Lemma 7.3. O

8 Concluding Remarks

The study on noncolliding BM and determinantal processes reported in this paper will be
extended in several directions. We would like to give some of future problems below.

(1) In Sect. 4 we let the initial configuration vy be the GUE-eigenvalue distribution, and
shown that the system is determinantal. If we let vy be the eigenvalue distribution in the
Gaussian orthogonal ensemble (GOE),

1 _ 0,2
g NN O 20 (e Oy O ey (8.1)

GOE[,.(0)y __
vy (™) =
0

Cy
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2

3)

(3.11) becomes
(6 o Iy () / Fult — to x1x©)dx®
Wy
1
= —hy(x) / fw( — 1o, x|x @) sgn(hy (x@))dx®. (8.2)
N’ RN

Instead of the Heine identity (4.11), we should use the de Bruin identity [25]

/ dx det [gj(xk)]=Pf15j,k5N|:/ dx/dfsgn(f—x)gj(x)gk(}')]
Wy 1<j.ksN R R

for integrable continuous functions g;, 1 < j < N. As shown in Appendix A of [57], for
example, the generating function of multitime correlation functions is then expressed by
the Fredholm Pfaffian [79] and the system becomes a Pfaffian process, in the sense that
any multitime correlation function is given by a Pfaffian. Such Pfaffian processes have
been studied by many authors [17, 19, 34, 44, 82, 86, 87]. The systems studied in [37,
51, 69, 72] are also Pfaffian processes, since the ‘quaternion determinantal expressions’
of correlation functions, introduced and developed by Dyson, Mehta, Forrester, and Na-
gao [31, 65, 66, 68, 71], are readily transformed to Pfaffian expressions. As implied by
Proposition 3.2, the system exhibits a transition from GOE distribution to GUE distri-
bution [52, 67, 77]. Continuity of sample paths and general characterization of infinite
Pfaffian processes will be interesting problems. The case with other initial distribution
(in particular, when it has continuous parameters) will be interesting [55, 57].

As explained in Sects. 1 and 3, the present noncolliding BM is the A-transform of the
absorbing BM in the Weyl chamber (1.10) of type Ay_;. We can find appropriate /-
transforms of the absorbing BMs in the Weyl chambers of types Cy and Dy. The ob-
tained noncolliding diffusion processes are stochastic versions of non-standard random
matrix ensembles, which were called the class C and class D, respectively, by Altland
and Zirnbauer [3, 4, 99]. The stochastic version of the chiral GUE, realized by the non-
colliding squared Bessel process, was studied by Konig and O’Connell [59], which is
also obtained as an h-transform of the absorbing BM in the Weyl chamber of type Cy.
See [41, 55] for more details. Systematic classifications of determinantal and Pfaffian
processes will be important.

There are many other examples of finite and infinite determinantal processes, which are
not considered in the present paper. Markov processes on partitions (Young diagrams)
have been studied and determinantal processes associated with other types of projec-
tions than ours have been reported [14, 15, 73]. The determinantal processes, whose
kernels are expressed using multiple orthogonal functions (e.g. the Pearcey kernel), are
discussed in [5, 20-24, 44, 74, 97]. The consideration given in Sects. 6 and 7 in the
present paper should be generalized.
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