Determinantal Processes and Entire Functions

Makoto KATORI (Chuo Univ., Tokyo)

joint work with Hideki TANEMURA (Chiba)

CS05: Noncolliding Diffusion Processes and Random Matrix Theory

SPA OSAKA 2010,

34th Conference on Stochastic Processes and Their Applications September 6-10, 2010, Osaka, Japan

Katori, M., Tanemura, H.: Non-equilibrium dynamics of Dyson's model with an Infinite number of particles, Commun. Math. Phys. <u>293</u> (2010) 469-497

Katori, M., Tanemura, H.: Zeros of Airy function and relaxation process, J. Stat. Phys. 136 (2009) 1177-1204

Katori, M., Tanemura, H.: Noncolliding squared Bessel processes and Weierstrass canonical products for entire functions, arXiv:1008.0144

1. The Dyson model as a Determinantal Processes

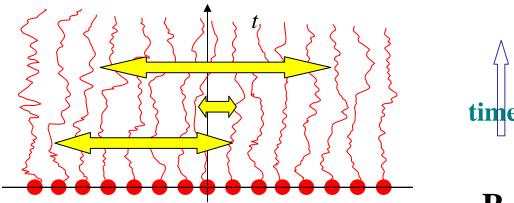
• Dyson's Brownian motion (BM) model $\{X_i(t)\}_{i=1}^n$

$$dX_i(t) = dB_i(t) + \frac{\beta}{2} \sum_{1 \le j \le n, j \ne i} \frac{dt}{X_i(t) - X_j(t)}, \quad 1 \le i \le n, \quad t \in [0, \infty),$$

 $\beta > 0$: a parameter indicating the strength of 1/x force,

 $\{B_i(t)\}_{i=1}^n$: independent 1 dim. standard BMs, $B_i(0) = 0, 1 \le i \le n$.

- To understand the time-evolution of distributions of interacting particle systems on a large space-time scale (thermodynamic and hydrodynamic limits) is one of the main topics of statistical physics.
 - If the interactions among particles are **short ranged**, the standard theory is useful. e.g. Fritz (1987)
 - If they are long ranged, however, general theory has not yet been established and thus detailed study of model systems is required. e.g. Spohn (1987)



R

- In the present talk, we only consider the special case with $\beta = 2$.
- Let

 $\mathfrak{M} \equiv$ the space of nonnegative integer-valued Radon measures on \mathbb{R} , which is a Polish space with the vague topology.

$$\xi \in \mathfrak{M} \iff \xi(\cdot) = \sum_{i \in \mathbb{I}} \delta_{x_i}(\cdot) :$$
 unlabeled configuration

with a finite or infinite index set \mathbb{I} ,

a sequence of points in \mathbb{R} , $\boldsymbol{x} = (x_i)_{i \in \mathbb{I}}$,

satisfying $\xi(I) = \sharp \{x_i : x_i \in I\} < \infty$ for any compact subset $I \subset \mathbb{R}$.

We regard the Dyson model as an M-valued diffusion process

$$\Xi(t) = \sum_{i \in \mathbb{I}} \delta_{X_i(t)}, \quad t \in [0, \infty)$$

where $\{X_i(t)\}_{i\in\mathbb{I}}$ satisfy the SDEs

$$dX_i(t) = dB_i(t) + \sum_{1 \le j \le n, j \ne i} \frac{dt}{X_i(t) - X_j(t)}, \quad 1 \le i \le n, \quad t \in [0, \infty),$$

• The process under the initial configuration

$$\xi = \sum_{i \in \mathbb{I}} \delta_{x_i} \in \mathfrak{M}$$

is denoted by

$$(\Xi(t), \mathbb{P}_{\xi}).$$

We write the expectation with respect to \mathbb{P}_{ξ} as $\mathbb{E}_{\xi}[\cdot]$.

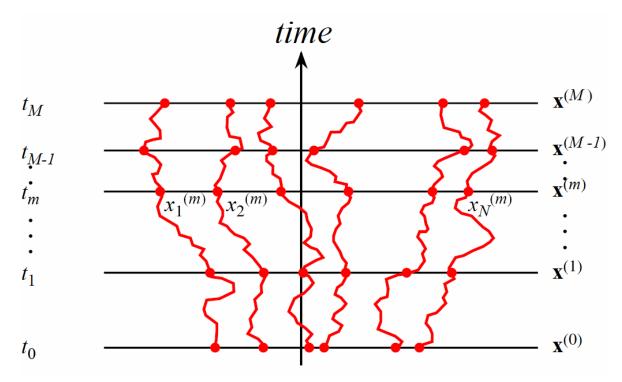
• Note that $\xi(\mathbb{R}) = \Xi(t, \mathbb{R}) = \text{total number of particles}, \quad t \geq 0.$

• Let

 $C_0(\mathbb{R})$ = the set of all continuous real-valued functions with compact supports, $M \in \mathbb{N} \equiv \{1, 2, \ldots\},$ a sequence of times $\mathbf{t} = (t_1, t_2, \ldots, t_M)$ with $0 < t_1 < \cdots < t_M < \infty$, a sequence of functions $\mathbf{f} = (f_{t_1}, f_{t_2}, \ldots, f_{t_M}) \in C_0(\mathbb{R})^M$.

• The moment generating function of multitime distribution of $(\Xi(t), \mathbb{P}_{\xi})$

$$\Psi_{\xi}^{\boldsymbol{t}}[\boldsymbol{f}] \equiv \mathbb{E}_{\xi} \left[\exp \left\{ \sum_{m=1}^{M} \int_{\mathbb{R}} f_{t_m}(x) \Xi(t_m, dx) \right\} \right].$$



 $C_0(\mathbb{R})$ = the set of all continuous real-valued functions with compact supports, $M \in \mathbb{N} \equiv \{1, 2, \dots\},\$ a sequence of times $\mathbf{t} = (t_1, t_2, \dots, t_M)$ with $0 < t_1 < \dots < t_M < \infty$, a sequence of functions $\mathbf{f} = (f_{t_1}, f_{t_2}, \dots, f_{t_M}) \in C_0(\mathbb{R})^M$.

• The moment generating function of multitime distribution of $(\Xi(t), \mathbb{P}_{\varepsilon})$

$$\Psi_{\xi}^{\boldsymbol{t}}[\boldsymbol{f}] \equiv \mathbb{E}_{\xi} \left[\exp \left\{ \sum_{m=1}^{M} \int_{\mathbb{R}} f_{t_m}(x) \Xi(t_m, dx) \right\} \right].$$

Remark 1.

Set $\chi_{t_m}(\cdot) = e^{f_{t_m}(\cdot)} - 1$, $1 \leq m \leq M$. Expand $\Psi_{\xi}^{\boldsymbol{t}}[\boldsymbol{f}]$ w.r.t. χ_{t_m} 's. Then

$$\Psi_{\xi}^{\boldsymbol{t}}[\boldsymbol{f}] = \sum_{\substack{N_m \geq 0, \\ 1 \leq m \leq M}} \int_{\prod_{m=1}^{M} \mathbb{W}_{N_m}^{A}} \prod_{m=1}^{M} \left\{ d\boldsymbol{x}_{N_m}^{(m)} \prod_{i=1}^{N_m} \chi_{t_m} \left(x_i^{(m)} \right) \right\} \rho_{\xi} \left(t_1, \boldsymbol{x}_{N_1}^{(1)}; \dots; t_M, \boldsymbol{x}_{N_M}^{(M)} \right)$$

with

with
$$\rho_{\xi}\left(t_{1},\boldsymbol{x}_{N_{1}}^{(1)};\ldots;t_{M},\boldsymbol{x}_{N_{M}}^{(M)}\right)=\int_{\prod_{m=1}^{M}\mathbb{R}^{N-N_{m}}}p_{\xi}\left(t_{1},\xi^{(1)};\ldots;t_{M},\xi^{(M)}\right)\prod_{m=1}^{M}\frac{1}{(N-N_{m})!}\prod_{j=N_{m}+1}^{N}dx_{j}^{(m)}$$

where $\boldsymbol{x}_{N_m}^{(m)} = (x_1^{(m)}, \dots, x_{N_m}^{(m)}), N_m \leq N$ and $d\boldsymbol{x}_{N_m}^{(m)} = \prod_{i=1}^{N_m} dx_i^{(m)}, 1 \leq m \leq M$, and $p_{\xi}(t_1,\xi^{(1)};\ldots;t_M,\xi^{(M)})$ denotes the multitime probability density.

Theorem 1

The Dyson model starting from any fixed configuration $\xi \in \mathfrak{M}$ with $\xi(\mathbb{R}) \in \mathbb{N}$ is determinantal in the sense that

$$\Psi_{\xi}^{\boldsymbol{t}}[\boldsymbol{f}] = \operatorname{Det}_{\substack{(s,t) \in (t_1, t_2, \dots, t_M)^2, \\ (x,y) \in \mathbb{R}^2}} \left[\delta_{st} \delta_x(y) + \mathbb{K}_{\xi}(s, x; t, y) \chi_t(y) \right]$$

with the continuous kernel (called the correlation kernel)

Fredholm determinant

$$\mathbb{K}_{\xi}(s,x;t,y) = \mathcal{G}_{s,t}(x,y) - \mathbf{1}(s>t)p_{t,s}(y,x),$$

where

$$\mathcal{G}_{s,t}(x,y) = \frac{1}{2\pi\sqrt{-1}} \oint_{\Gamma(\xi)} dz \, p_{0,s}(z,x) \int_{\mathbb{R}} dw \, p_{0,t}(w,-\sqrt{-1}y) \frac{1}{\sqrt{-1}w-z} \Phi_{\xi}^{z}(\sqrt{-1}w),$$

$$p_{s,t}(x,y) = \frac{e^{-(y-x)^{2}/\{2(t-s)\}}}{\sqrt{2\pi(t-s)}} \quad \text{(heat kernel)}$$

$$\text{Weierstrass canonical product rep.}$$

and

Entire function
$$\Phi^u_\xi(z) = \prod_{x \in \text{supp } \xi \cap \{u\}^c} \left(1 - \frac{z-u}{x-u}\right)^{\xi(\{x\})} \text{ with genus } 0$$

with supp $\xi = \{x \in \mathbb{R} : \xi(\{x\}) > 0\}$. Here $\Gamma(\xi)$ is a closed contour on the complex plane \mathbb{C} encircling the points in supp ξ on the real line \mathbb{R} once in the positive direction.

Remark 2A.

By definition of Fredholm determinant

$$\Psi_{\xi}^{\mathbf{t}}[\mathbf{f}] = \underset{\substack{(s,t) \in (t_{1},t_{2},\dots,t_{M})^{2}, \\ (x,y) \in \mathbb{R}^{2}}}{\text{Det}} \left[\delta_{st} \delta_{x}(y) + \mathbb{K}_{\xi}(s,x;t,y) \chi_{t}(y) \right] \\
= \sum_{\substack{N_{m} \geq 0, \\ 1 \leq m \leq M}} \int_{\prod_{m=1}^{M} \mathbb{W}_{N_{m}}^{A}} \prod_{m=1}^{M} \left\{ d\mathbf{x}_{N_{m}}^{(m)} \prod_{i=1}^{N_{m}} \chi_{t_{m}} \left(x_{i}^{(m)} \right) \right\} \det_{1 \leq i \leq N_{m}, 1 \leq j \leq N_{n}, \\ 1 \leq m, n \leq M} \left[\mathbb{K}_{\xi}(t_{m}, x_{i}^{(m)}; t_{n}, x_{j}^{(n)}) \right].$$

$$\Psi_{\xi}^{\boldsymbol{t}}[\boldsymbol{f}] = \sum_{\substack{N_m \geq 0, \\ 1 \leq m \leq M}} \int_{\prod_{m=1}^{M} \mathbb{W}_{N_m}^{\mathrm{A}}} \prod_{m=1}^{M} \left\{ d\boldsymbol{x}_{N_m}^{(m)} \prod_{i=1}^{N_m} \chi_{t_m} \Big(x_i^{(m)} \Big) \right\} \rho_{\xi} \Big(t_1, \boldsymbol{x}_{N_1}^{(1)}; \ldots; t_M, \boldsymbol{x}_{N_M}^{(M)} \Big)$$

Any multitime correlation function is given by a determinant

$$\rho_{\xi}\left(t_{1}, \boldsymbol{x}_{N_{1}}^{(1)}; \ldots; t_{M}, \boldsymbol{x}_{N_{M}}^{(M)}\right) = \det_{\substack{1 \leq i \leq N_{m}, 1 \leq j \leq N_{n}, \\ 1 \leq m, n \leq M}} \left[\mathbb{K}_{\xi}(t_{m}, x_{i}^{(m)}; t_{n}, x_{j}^{(n)})\right].$$

Remark 2B.

If we consider the particle distribution at a single time t > 0;

$$M = 1,$$
 $\mathbf{t} = (t),$ $\mathbf{f} = (f),$ $\chi_t(\cdot) = e^{f_t(\cdot)} - 1,$

then

$$\Psi_{\xi}^{t}[f] = \operatorname{Det}_{(x,y)\in\mathbb{R}^{2}} \left[\delta_{x}(y) + \mathbb{K}_{\xi}^{t}(x,y)\chi_{t}(y) \right]$$

with

$$\mathbb{K}_{\xi}^{t}(x,y) = \frac{1}{2\pi\sqrt{-1}} \oint_{\Gamma(\xi)} dz \, p_{0,t}(z,x) \int_{\mathbb{R}} dw \, p_{0,t}(w,-\sqrt{-1}y) \frac{1}{\sqrt{-1}w-z} \Phi_{\xi}^{z}(\sqrt{-1}w).$$

Any single-time distribution is a **determinantal** (Fermion) point process with the spatial correlations

$$\rho_{\xi}^{t}\left(\boldsymbol{x}_{N_{1}}\right) = \det_{1 \leq i, j \leq N_{1}} \left[\mathbb{K}_{\xi}^{t}(x_{i}, x_{j}) \right], \quad t \in [0, \infty), \quad N_{1} \leq \xi(\mathbb{R}).$$

See Soshnikov (2000), Shirai-Takahashi (2003), Hough-Krishnapur-Peres-Virág (2009).

In particular, if the initial configuration is of N-multiple concentrated on the origin:

$$\xi = N\delta_0 = \xi(\mathbb{R})\delta_0$$
 (i.e. all particles start from the origin),

then

$$\mathbb{K}_{N\delta_0}(s, x; t, y) = \begin{cases} \frac{1}{\sqrt{2s}} \sum_{k=0}^{N-1} \left(\frac{t}{s}\right)^{k/2} \varphi_k\left(\frac{x}{\sqrt{2s}}\right) \varphi_k\left(\frac{y}{\sqrt{2t}}\right) & \text{if } s \leq t \\ -\frac{1}{\sqrt{2s}} \sum_{k=N}^{\infty} \left(\frac{t}{s}\right)^{k/2} \varphi_k\left(\frac{x}{\sqrt{2s}}\right) \varphi_k\left(\frac{y}{\sqrt{2t}}\right) & \text{if } s > t, \end{cases}$$

where

$$\varphi_k(\zeta) = \frac{1}{\sqrt{\sqrt{\pi}2^k k!}} e^{-\zeta^2/2} H_k(\zeta), \quad k \in \mathbb{N}_0 = \{0, 1, 2, \dots\} \quad \text{(Hermite functions)}.$$

the extended Hermite kernel Eynard-Mehta (1998)

In particular, if the initial configuration is of N-multiple concentrated on the origin:

$$\xi = N\delta_0 = \xi(\mathbb{R})\delta_0$$
 (i.e. all particles start from the origin),

then

$$\mathbb{K}_{N\delta_0}(s, x; t, y) = \begin{cases} \frac{1}{\sqrt{2s}} \sum_{k=0}^{N-1} \left(\frac{t}{s}\right)^{k/2} \varphi_k \left(\frac{x}{\sqrt{2s}}\right) \varphi_k \left(\frac{y}{\sqrt{2t}}\right) & \text{if } s \leq t \\ -\frac{1}{\sqrt{2s}} \sum_{k=N}^{\infty} \left(\frac{t}{s}\right)^{k/2} \varphi_k \left(\frac{x}{\sqrt{2s}}\right) \varphi_k \left(\frac{y}{\sqrt{2t}}\right) & \text{if } s > t, \end{cases}$$

where

$$\varphi_k(\zeta) = \frac{1}{\sqrt{\sqrt{\pi}2^k k!}} e^{-\zeta^2/2} H_k(\zeta), \quad k \in \mathbb{N}_0 = \{0, 1, 2, \dots\} \quad \text{(Hermite functions)}.$$

the extended Hermite kernel Eynard-Mehta (1998)

$$\mathbb{K}_{\xi}(s, x; t, y) + \mathbf{1}(s > t) p_{s,t}(y, x)
= \frac{1}{2\pi\sqrt{-1}} \oint_{\Gamma(\xi)} dz \, p_{0,s}(z, x) \int_{\mathbb{R}} dw \, p_{0,t}(w, -\sqrt{-1}y) \frac{1}{\sqrt{-1}w - z} \Phi_{\xi}^{z}(\sqrt{-1}w)
= \frac{1}{\sqrt{s}} \sum_{k=0}^{N-1} \left(\frac{t}{s}\right)^{k/2} H_{k}^{(+)} \left(\frac{x}{\sqrt{s}}; \frac{1}{\sqrt{s}} \circ \xi\right) H_{k}^{(-)} \left(\frac{y}{\sqrt{t}}; \frac{1}{\sqrt{t}} \circ \xi\right).$$

multiple Hermite polynomials (see Ismail (2005), Bleher-Kuijlaars (2005)).

2. Construction of Infinite Particle Systems

Consider the special case treated in **Remark 2C**.

$$\xi = N\delta_0 = \xi(\mathbb{R})\delta_0$$
 (i.e. all particles start from the origin),

then

$$\mathbb{K}_{N\delta_0}(s, x; t, y) = \begin{cases} \frac{1}{\sqrt{2s}} \sum_{k=0}^{N-1} \left(\frac{t}{s}\right)^{k/2} \varphi_k\left(\frac{x}{\sqrt{2s}}\right) \varphi_k\left(\frac{y}{\sqrt{2t}}\right) & \text{if } s \leq t \\ -\frac{1}{\sqrt{2s}} \sum_{k=N}^{\infty} \left(\frac{t}{s}\right)^{k/2} \varphi_k\left(\frac{x}{\sqrt{2s}}\right) \varphi_k\left(\frac{y}{\sqrt{2t}}\right) & \text{if } s > t, \end{cases}$$

 \boldsymbol{x}

 $t \sqrt{2N} \times \sqrt{T} = 2N$

T=2N

$$\xi = N\delta_0 = \xi(\mathbb{R})\delta_0$$
 (i.e. all particles start from the origin),

then

$$\mathbb{K}_{N\delta_0}(s, x; t, y) = \begin{cases} \frac{1}{\sqrt{2s}} \sum_{k=0}^{N-1} \left(\frac{t}{s}\right)^{k/2} \varphi_k\left(\frac{x}{\sqrt{2s}}\right) \varphi_k\left(\frac{y}{\sqrt{2t}}\right) & \text{if } s \leq t \\ -\frac{1}{\sqrt{2s}} \sum_{k=N}^{\infty} \left(\frac{t}{s}\right)^{k/2} \varphi_k\left(\frac{x}{\sqrt{2s}}\right) \varphi_k\left(\frac{y}{\sqrt{2t}}\right) & \text{if } s > t, \end{cases}$$

$$\xi(\mathbb{R}) = N \to \infty$$
$$time = \frac{2N}{\pi^2} + t$$

$$\mathbf{K}_{\sin}(s, x; t, y) = \frac{1}{2\pi} \int_{|k| \le \pi} dk \, e^{k^2(t-s)/2 + ik(y-x)} - \mathbf{1}(s > t) p_{t,s}(y, x)$$

$$= \begin{cases} \int_0^1 du \, e^{\pi^2 u^2(t-s)/2} \cos\{\pi u(y-x)\} & \text{if } t > s \\ K_{\sin}(x, y) & \text{if } t = s \\ -\int_1^\infty du \, e^{\pi^2 u^2(t-s)/2} \cos\{\pi u(y-x)\} & \text{if } t < s, \end{cases}$$

 $s, t \geq 0, x, y \in \mathbb{R}$ with

$$K_{\sin}(x,y) = \frac{1}{2\pi} \int_{|k| \le \pi} dk \, e^{ik(y-x)} = \frac{\sin\{\pi(y-x)\}}{\pi(y-x)}, \quad x, y \in \mathbb{R}.$$

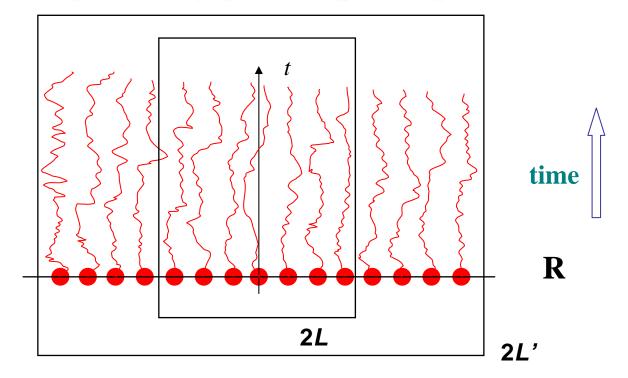
The extended sine-kernel (Nagao-Forrester (1998)).

It is expected that the determinantal process having an infinite number of particels with the extended sine-kernel describes the equilibrium dynamics of the infinite particle system constructed by Osada (1996) by the Dirichlet form approach.

• Consider this infinite particle system from the view-point of SDEs:

$$dX_i(t) = dB_i(t) + \sum_{1 \le j \le N \neq i} \frac{dt}{X_i(t) - X_j(t)}, \quad 1 \le i \le N, \ t \in [0, \infty).$$

- Since the 1/x force is not summable, in the infinite-particle limit $N \to \infty$ the sum in the above SDEs should be regarded as an **improper sum**, in the sense that for $X_i(t) \in [-L, L]$ the summation is restricted to j's such that $X_j(t) \in [-L, L]$ and then the limit $L \to \infty$ is taken.
- It is expected that the dynamics with infinite number of particles can exist only for initial configurations having the same asymptotic density to the right and left.



In our formula,

$$\lim_{N\to\infty}N\delta_0\notin\mathfrak{M}.$$

Another route to infinite particle systems.

• For $L > 0, \alpha > 0$ and $\xi \in \mathfrak{M}$ we put

$$M(\xi, L) = \int_{[-L, L] \setminus \{0\}} \frac{\xi(dx)}{x}, \qquad M_{\alpha}(\xi, L) = \left(\int_{[-L, L] \setminus \{0\}} \frac{\xi(dx)}{|x|^{\alpha}}\right)^{1/\alpha},$$

and

$$M(\xi) = \lim_{L \to \infty} M(\xi, L), \quad M_{\alpha}(\xi) = \lim_{L \to \infty} M_{\alpha}(\xi, L),$$

if the limits finitely exist.

- We have introduced the following conditions for initial configurations $\xi \in \mathfrak{M}$:
 - (C.1) there exists $C_0 > 0$ such that $|M(\xi, L)| < C_0, L > 0$,
 - (C.2) (i) there exist $\alpha \in (1,2)$ and $C_1 > 0$ such that $M_{\alpha}(\xi) \leq C_1$,
 - (ii) there exist $\beta > 0$ and $C_2 > 0$ such that

$$M_1(\tau_{-a^2}\xi^{\langle 2\rangle}) \le C_2(\max\{|a|,1\})^{-\beta} \quad \forall a \in \text{supp } \xi.$$

• Set $\mathfrak{M}_0 = \{ \xi \in \mathfrak{M} : \xi(\{x\}) \le 1 \text{ for any } x \in \mathbb{R} \}.$

• It was shown that, if $\xi \in \mathfrak{M}_0$ satisfies the conditions (C.1) and (C.2), then for $a \in \mathbb{R}$ and $z \in \mathbb{C}$,

$$\Phi_{\xi}^{a}(z) \equiv \lim_{L \to \infty} \Phi_{\xi \cap [a-L,a+L]}^{a}(z)$$
 finitely exists,

and

$$|\Phi_{\xi}^{a}(z)| \le C \exp\left\{c(|a|^{\theta} + |z|^{\theta})\right\} \left|\frac{z}{a}\right|^{\xi(\{0\})} \left|\frac{a}{a-z}\right|, \quad a \in \text{supp } \xi, \ z \in \mathbb{C},$$

for some c, C > 0 and $\theta \in (\max\{\alpha, (2 - \beta)\}, 2)$, which are determined by the constants C_0, C_1, C_2 and the indices α, β in the conditions.

- Then even if $\xi(\mathbb{R}) = \infty$, under the conditions (C.1) and (C.2), \mathbb{K}_{ξ} is well-defined as a correlation kernel and dynamics of the Dyson model with an infinite number of particles $(\Xi(t), \mathbb{P}_{\xi})$ exists as a determinantal process.
- We note that in the case that $\xi \in \mathfrak{M}_0$ satisfies the conditions (C.1) and (C.2) with constants C_0, C_1, C_2 and indices α and β , then $\xi \cap [-L, L], \forall L > 0$ does as well. Then we can obtain the convergence of moment generating functions

$$\Psi_{\xi \cap [-L,L]}^{\boldsymbol{t}}[\boldsymbol{f}] \to \Psi_{\xi}^{\boldsymbol{t}}[\boldsymbol{f}] \quad \text{as} \quad L \to \infty,$$

which implies the convergence of the probability measures

$$\mathbb{P}_{\xi \cap [-L,L]} \to \mathbb{P}_{\xi} \quad \text{as} \quad L \to \infty$$

in the sense of finite dimensional distributions.

- Another way to the equilibrium dynamics of infinite particle system with the extended sine kernel.
- Set the initial configuration as

$$\xi_{\mathbb{Z}}(\cdot) \equiv \sum_{\ell \in \mathbb{Z}} \delta_{\ell}(\cdot),$$

that is, the configuration in which every point of \mathbb{Z} is occupied by one particle.

• This configuration $\xi_{\mathbb{Z}}$ satisfies our conditions and Dyson's model starting from $\xi_{\mathbb{Z}}$ is determinantal with the kernel

$$\mathbb{K}_{\xi_{\mathbb{Z}}}(s, x; t, y) = \mathbf{K}_{\sin}(s, x; t, y)
+ \frac{1}{2\pi} \int_{|k| \le \pi} dk \, e^{k^{2}(t-s)/2 + ik(y-x)} \Big\{ \vartheta_{3}(x - iks, 2\pi is) - 1 \Big\}
= \mathbf{K}_{\sin}(s, x; t, y)
+ \sum_{\ell \in \mathbb{Z} \setminus \{0\}} e^{2\pi ix\ell - 2\pi^{2}s\ell^{2}} \int_{0}^{1} du \, e^{\pi^{2}u^{2}(t-s)/2} \cos \Big[\pi u \{ (y - x) - 2\pi is\ell \} \Big],$$

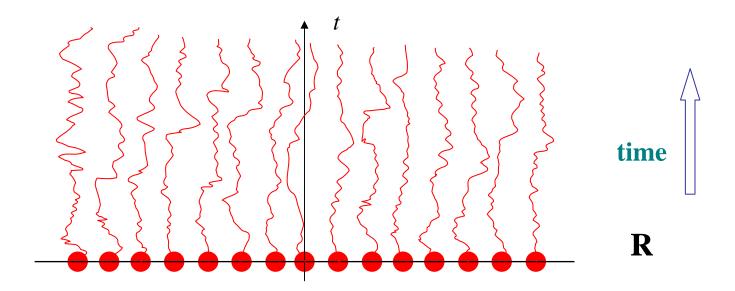
 $s,t\geq 0, x,y\in\mathbb{R}$, where ϑ_3 is a version of the Jacobi theta function defined by

$$\vartheta_3(v,\tau) = \sum_{\ell \in \mathbb{Z}} e^{2\pi i v \ell + \pi i \tau \ell^2}, \quad \Im \tau > 0.$$

- The lattice structure $\mathbb{K}_{\xi_{\mathbb{Z}}}(s, x+n; t, y+n) = \mathbb{K}^{\xi^{\mathbb{Z}}}(s, x; t, y), \forall n \in \mathbb{Z}, s, t \geq 0$ is clear by the periodicity, $\vartheta_3(v+n, \tau) = \vartheta_3(v, \tau), \forall n \in \mathbb{Z}$.
- We can prove

$$\lim_{u\to\infty} \mathbb{K}_{\xi_{\mathbb{Z}}}(u+s,x;u+t,y) = \mathbf{K}_{\sin}(s,x;t,y).$$

• The relaxation process starting from $\xi_{\mathbb{Z}}$ to the stationary state, which is the determinantal point process with the sine kernel.



3. Inhomogeneous Infinite Particle Systems

- **Problem:** How we can control Dyson's model with infinite number of particles starting from *asymmetric* initial configurations.
- The motivation is again coming from the **random matrix theory** as follows. Consider the *Airy function*

$$\operatorname{Ai}(z) = \frac{1}{2\pi} \int_{\mathbb{R}} dk \, e^{\sqrt{-1}(zk + k^3/3)}.$$

It is a solution of Airy's equation f''(z) - zf(z) = 0 with the asymptotics on the real axis \mathbb{R}

$$\mathrm{Ai}(x) \simeq \frac{1}{2\sqrt{\pi}x^{1/4}} \exp\left(-\frac{2}{3}x^{3/2}\right), \quad \mathrm{Ai}(-x) \simeq \frac{1}{\sqrt{\pi}x^{1/4}} \cos\left(\frac{2}{3}x^{3/2} - \frac{\pi}{4}\right) \quad \mathrm{in} \quad x \to +\infty.$$

• In the GUE random matrix theory, the following scaling limit has been extensively studied:

$$\lim_{N \to \infty} \mu_{N,N^{1/3}}^{\text{GUE}}(2N^{2/3} + \cdot) = \mu_{\text{Ai}}(\cdot),$$

where μ_{Ai} is the determinantal point process such that the correlation kernel is given by (Tracy-Widom (1994)),

$$K_{Ai}(y|x) = \int_0^\infty du \operatorname{Ai}(u+x) \operatorname{Ai}(u+y)$$

$$= \begin{cases} \frac{\operatorname{Ai}(x)\operatorname{Ai}'(y) - \operatorname{Ai}'(x)\operatorname{Ai}(y)}{x-y}, & x \neq y \in \mathbb{R} \\ (\operatorname{Ai}'(x))^2 - x(\operatorname{Ai}(x))^2, & x = y \in \mathbb{R}. \end{cases}$$

It is called the *soft-edge scaling limit*, since $x^2/2t \simeq (2N^{2/3})^2/(2N^{1/3}) = 2N$ marks the right edge of semicircle-shaped profile of the GUE eigenvalue distribution.

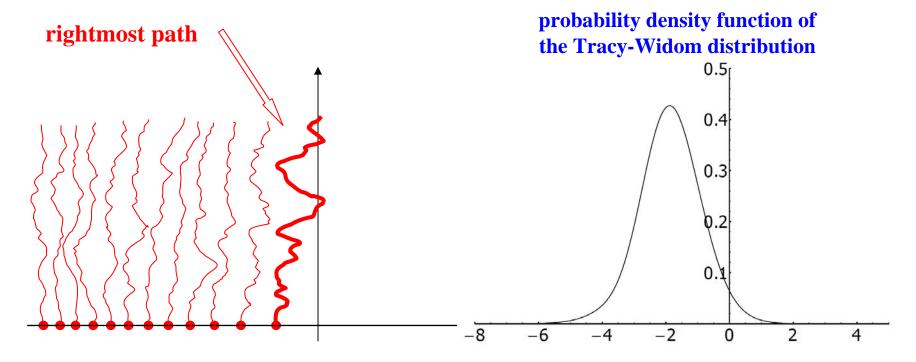
• The particle distribution μ_{Ai} with the Airy kernel is highly asymmetric: As a matter of fact, the particle density $\rho_{Ai}(x) = K_{Ai}(x|x)$ decays rapidly to zero as $x \to \infty$, but it diverges

$$\rho_{\mathrm{Ai}}(x) \simeq \frac{1}{\pi} (-x)^{1/2} \to \infty \quad \text{as} \quad x \to -\infty.$$

• Let R be the position of the rightmost particle on \mathbb{R} in μ_{Ai} . Then its distribution is given by the celebrated Tracy-Widom distribution (Tracy-Widom (1994))

$$\mu_{Ai}(R < x) = \exp\left[-\int_{x}^{\infty} (y - x)(q(y))^{2} dy\right],$$

where q(x) is the unique solution of the Painlevé II equation $q'' = xq + 2q^3$ satisfying the boundary condition $q(x) \simeq \operatorname{Ai}(x)$ in $x \to \infty$.



• As an explicit answer to the above questions, we have presented a **relaxation process** with infinite number of particles converging to the stationary state μ_{Ai} in $t \to \infty$. Its initial configuration is given by

$$\xi_{\mathcal{A}}(\cdot) = \sum_{a \in \mathcal{A}} \delta_a(\cdot) = \sum_{i=1}^{\infty} \delta_{a_i}(\cdot),$$

in which every zero of the Airy function is occupied by one particle.

• This special choice of the initial configuration is due to the fact that the zeros of the Airy function are located only on the negative part of the real axis \mathbb{R} ,

$$\mathcal{A} \equiv \operatorname{Ai}^{-1}(0) = \left\{ a_i, i \in \mathbb{N} : \operatorname{Ai}(a_i) = 0, 0 > a_1 > a_2 > \cdots \right\},$$

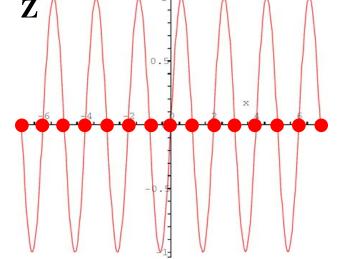
with the values $a_1 = -2.33...$, $a_2 = -4.08...$, $a_3 = -5.52...$, $a_4 = -6.78...$, and that they admit the asymptotics $a_i \simeq -\left(\frac{3\pi}{2}\right)^{2/3} i^{2/3}$ in $i \to \infty$.

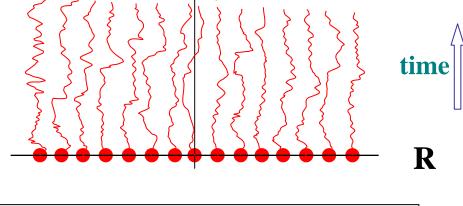
• Then the average density of zeros of the Airy function around x, denoted by $\rho_{Ai^{-1}(0)}(x)$, behaves as

$$\rho_{\text{Ai}^{-1}(0)}(x) \simeq \frac{1}{\pi} (-x)^{1/2} \to \infty \quad \text{as} \quad x \to -\infty,$$

which coincides with

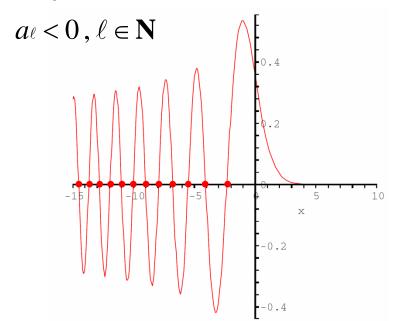
$$\rho_{\rm Ai}(x) \simeq \frac{1}{\pi} (-x)^{1/2} \to \infty \quad \text{as} \quad x \to -\infty.$$

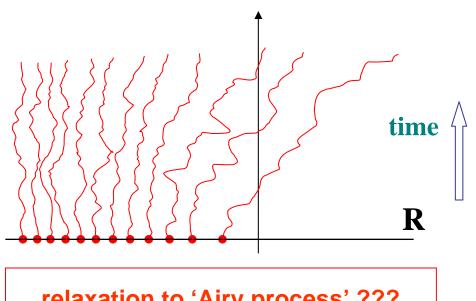




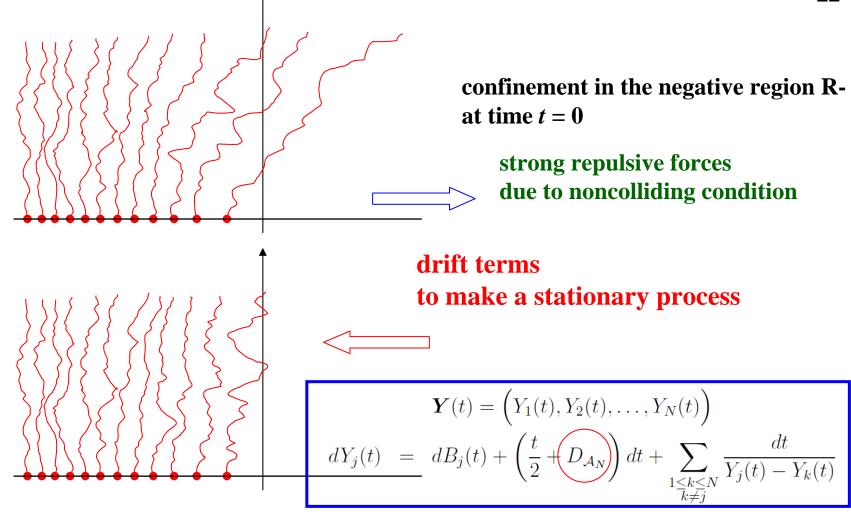
relaxation to 'sine process'

Airy zeros





relaxation to 'Airy process' ???



$$D_{\mathcal{A}_N} = d_1 + \sum_{\ell=1}^N \frac{1}{a_\ell} \simeq -\left(\frac{12}{\pi^2}\right)^{1/3} \underline{N^{1/3} \to -\infty \quad \text{as} \quad N \to \infty}$$

• The approximation of our process with a finite number of particles $N < \infty$ is given by

$$\Xi_{\mathcal{A}}(t) = \sum_{i=1}^{N} \delta_{Y_i(t)}$$

with

$$Y_i(t) = X_i(t) + \frac{t^2}{4} + D_{\mathcal{A}_N}t, \quad 1 \le i \le N, \quad t \in [0, \infty),$$

associated with the solution $\boldsymbol{X}(t) = (X_1(t), \dots, X_N(t))$ of Dyson's model, where

$$D_{\mathcal{A}_N} = d_1 + \sum_{\ell=1}^N \frac{1}{a_\ell}.$$

Here $d_1 = \operatorname{Ai}'(0)/\operatorname{Ai}(0)$ and $\mathcal{A}_N \equiv \{0 > a_1 > \dots > a_N\} \subset \mathcal{A}$ is the sequence of the first N zeros of the Airy function.

• In other words, $\mathbf{Y}(t) = (Y_1(t), Y_2(t), \dots, Y_N(t))$ satisfies the following SDEs ;

$$dY_{i}(t) = dB_{i}(t) + \left(\frac{t}{2} + D_{A_{N}}\right) dt + \sum_{\substack{1 \le j \le N \\ j \ne i}} \frac{dt}{Y_{i}(t) - Y_{j}(t)}$$

$$= dB_{i}(t) + \sum_{\substack{1 \le j \le N \\ j \ne i}} \left(\frac{1}{Y_{i}(t) - Y_{j}(t)} + \frac{1}{a_{j}}\right) dt + \left(\frac{t}{2} + d_{1} + \frac{1}{a_{i}}\right) dt,$$

$$1 \le i \le N, \quad t \in [0, \infty).$$

• Note that

$$D_{\mathcal{A}_N} \simeq -\left(\frac{12}{\pi^2}\right)^{1/3} N^{1/3} \to -\infty \quad \text{as} \quad N \to \infty.$$

$$\mathbb{K}_{Ai}(s, x; t, y) = \sum_{a \in Ai^{-1}(0)} \int_{\sqrt{-1}\mathbb{R}} \frac{dz}{\sqrt{-1}} p_{Ai}(s, x|a) \frac{1}{z - a} \frac{Ai(z)}{Ai'(a)} p_{Ai}(-t, z|y)
-1(s > t) p_{Ai}(s - t, x|y)
= \int_{0}^{\infty} du \int_{\mathbb{R}} dw \, e^{-ut/2 + ws/2} Ai(u + y) Ai(w + x) \sum_{\ell=1}^{\infty} \frac{Ai(u + a_{\ell}) Ai(w + a_{\ell})}{(Ai'(a_{\ell})^{2}}
-1(s > t) p_{Ai}(s - t, x|y)$$

$$t \to \infty$$
 $s \to \infty$
 $|t-s| < \infty$

Relaxation

Process

Relaxation

$$\mathbf{K}_{\mathrm{Ai}}(t,y|x) = \begin{cases} \int_0^\infty du \, e^{-ut/2} \mathrm{Ai}(u+x) \mathrm{Ai}(u+y) & \text{if } t \geq 0 \\ \\ -\int_{-\infty}^0 du \, e^{-ut/2} \mathrm{Ai}(u+x) \mathrm{Ai}(u+y) & \text{if } t < 0, \end{cases}$$
 extended Airy kernel

Let
$$q_{s,t}(x,y) = \text{transition probability density of } B(t) + t^2/4$$

 $= p_{s,t} \left(\left(x - \frac{s^2}{4} \right), \left(y - \frac{t^2}{4} \right) \right)$
and set $\widehat{g}(s,x) \equiv \exp \left\{ -D_{\mathcal{A}_N} \left(\frac{D_{\mathcal{A}_N} s}{2} + \frac{s^2}{4} - x \right) \right\}.$
Then $p_{0,s} \left(x', \left(x - D_{\mathcal{A}_N} s - \frac{s^2}{4} \right) \right) = q_{0,s}(x',x) \times \widehat{g}(s,x) e^{-D_{\mathcal{A}_N} x'}$

$$\mathbb{K}_{\xi}\left(s, x - D_{\mathcal{A}_{N}}s - \frac{s^{2}}{4}; t, y - D_{\mathcal{A}_{N}}t - \frac{t^{2}}{4}\right)$$

$$= \frac{\widehat{g}(s, x)}{\widehat{g}(t, y)} \left[\int_{\mathbb{R}} \xi^{N}(dx') \int_{\sqrt{-1}\mathbb{R}} \frac{dy'}{\sqrt{-1}} \ q_{0,s}(x', x) e^{-D_{\mathcal{A}_{N}}x'} \Phi_{\xi}^{x'}(y') e^{D_{\mathcal{A}_{N}}y'} q_{t,0}(y, y') - \mathbf{1}(s > t) q_{t,s}(y, x) \right]$$

$$\equiv \frac{\widehat{g}(s, x)}{\widehat{g}(t, y)} \mathbb{K}_{\xi}^{\mathcal{A}}(s, x; t, y).$$

Weierstrass canonical product with genus 1

$$e^{-D_{\mathcal{A}_N}x'}\Phi_{\xi}^{x'}(y')e^{D_{\mathcal{A}_N}y'} = e^{d_1(y'-x')}\prod_{x\in\xi^N\cap\{x'\}^c} \left[\left(1-\frac{y'-x'}{x-x'}\right)\exp\left(\frac{y'-x'}{x}\right)\right]$$

$$\equiv \widehat{\Phi}_{\xi}^{x'}(y').$$

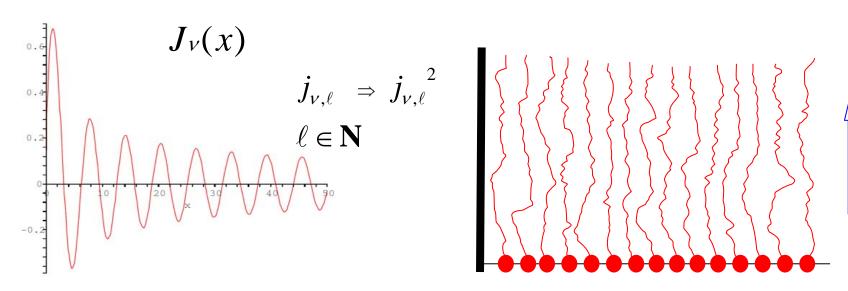
4. Noncolliding BESQ showing relaxation to determinantal process with extended Bessel kernel

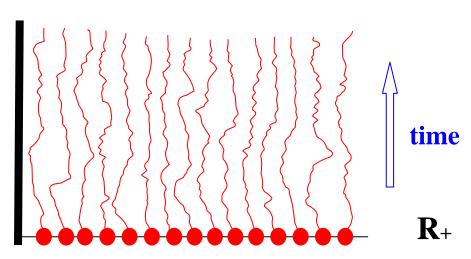
SDEs for finite particle approximation

$$\boldsymbol{X}^{(\nu)}(t) = \left(X_1^{(\nu)}(t), X_2^{(\nu)}(t), \dots, X_N^{(\nu)}(t)\right) \in \mathbb{W}_N^{\mathbf{C}} \quad \text{Weyl chamber of type } C_N, \quad t \in [0, \infty)$$

$$dX_j^{(\nu)}(t) = 2\sqrt{X_j^{(\nu)}}dB_j(t) + 2\left\{N + \nu + \sum_{\substack{1 \le k \le N \\ k \ne j}} \frac{X_j^{(\nu)}(t) + X_k^{(\nu)}(t)}{X_j^{(\nu)}(t) - X_k^{(\nu)}(t)}\right\}dt, \quad 1 \le j \le N, \quad t \in [0, \infty),$$

where $B_i(t)$ are independent one-dimensional standard BMs





$$\mathbb{K}_{J_{\nu}}(s, x; t, y) = \sum_{\ell=1}^{\infty} \int_{-\infty}^{0} dz \, p_{J_{\nu}}(s, x | j_{\nu,\ell}^{2}) \frac{2j_{\nu,\ell}}{z - j_{\nu,\ell}^{2}} \frac{J_{\nu}(\sqrt{z})}{J_{\nu+1}(j_{\nu,\ell})} p_{J_{\nu}}(-t, z | y) \\
-\mathbf{1}(s > t) p_{J_{\nu}}(s - t, x | y) \\
= \int_{0}^{1} du \int_{0}^{\infty} dw \, e^{ut/2 - 2ws} J_{\nu}(\sqrt{uy}) J_{\nu}(2\sqrt{wx}) \sum_{\ell=1}^{\infty} \frac{J_{\nu}(2\sqrt{w}j_{\nu,\ell}) J_{\nu}(\sqrt{u}j_{\nu,\ell})}{(J_{\nu+1}(j_{\nu,\ell}))^{2}} \\
-\mathbf{1}(s > t) p_{J_{\nu}}(s - t, x | y)$$

$$t \to \infty$$

$$s \to \infty$$

$$|t - s| < \infty$$

extended Bessel kernel

Relaxation Process

$$\mathbf{K}_{J_{\nu}}(t-s,y|x) = \begin{cases} \int_{0}^{1} du \, e^{-2u(s-t)} J_{\nu}(2\sqrt{ux}) J_{\nu}(2\sqrt{uy}) & \text{if } s < t \\ \frac{J_{\nu}(2\sqrt{x})\sqrt{y} J_{\nu}'(2\sqrt{y}) - \sqrt{x} J_{\nu}'(2\sqrt{x}) J_{\nu}(2\sqrt{y})}{x-y} & \text{if } t = s \\ -\int_{1}^{\infty} du \, e^{-2u(s-t)} J_{\nu}(2\sqrt{ux}) J_{\nu}(2\sqrt{uy}) & \text{if } s > t. \end{cases}$$

5. Concluding Remarks

Theory of Entire Functions

order of growth ρ_f

$$\rho_f = \limsup_{r \to \infty} \frac{\log \log M_f(r)}{\log r} \quad \text{for} \quad M_f(r) = \max_{|z|=r} |f(z)|$$

$$\implies \quad \max_{|z|=r} |f(z)| \sim \exp(r^{\rho_f})$$

Weierstrass primary factors

$$G(u,p) = \begin{cases} 1-u & \text{if } p=0\\ (1-u)\exp\left[u + \frac{u^2}{2} + \dots + \frac{u^p}{p}\right] & \text{if } p \in \mathbb{N}. \end{cases}$$

Weierstrass canonical product of genus p

$$\Pi_p(\xi, z) = \prod_{x \in \xi \cap \{0\}^c} G\left(\frac{z}{x}, p\right), \quad z \in \mathbb{C}$$

Hadamard theorem

Any entire function f of finite order $\rho_f < \infty$ can be represented by

$$f(z) = z^m e^{P_q(z)} \Pi_p(\xi_f, z),$$

 $p = \text{a nonnegative integer less than or equal to } \rho_f,$ $P_q(z) = \text{a polynomial in } z \text{ of degree } q \leq \rho_f,$ m = the multiplicity of the root at the origin,and $\xi_f = \sum \delta_x.$

$$\sin \pi z = \pi z \Pi_{0}(\xi_{\mathbb{Z}}, z) = \pi z \prod_{x \in \xi_{\mathbb{Z}} \cap \{0\}^{c}} \left(1 - \frac{z}{x}\right) = \pi z \prod_{\ell \in \mathbb{Z}, \ell \neq 0} \left(1 - \frac{z}{\ell}\right)$$

$$J_{\nu}(z) = \frac{(z/2)^{\nu}}{\Gamma(\nu+1)} \Pi_{0}(\xi_{J_{\nu}}^{\langle 2 \rangle}, z^{2}) = \frac{(z/2)^{\nu}}{\Gamma(\nu+1)} \prod_{x \in \xi_{J_{\nu}} \cap \{0\}^{c}} \left(1 - \frac{z^{2}}{x^{2}}\right) = \frac{(z/2)^{\nu}}{\Gamma(\nu+1)} \prod_{\ell=1}^{\infty} \left(1 - \frac{z^{2}}{j_{\nu,\ell}^{2}}\right)$$

$$\operatorname{Ai}(z) = e^{d_{0} + d_{1}z} \Pi_{1}(\xi_{\mathcal{A}}, z) = e^{d_{0} + d_{1}z} \prod_{x \in \mathcal{A}} \left[\left(1 - \frac{z}{x}\right) e^{z/x}\right] = e^{d_{0} + d_{1}z} \prod_{\ell=1}^{\infty} \left[\left(1 - \frac{z}{a_{\ell}}\right) e^{z/a_{\ell}}\right]$$

 $x \in f^{-1}(0) \cap \{0\}^{c}$

General Theory for Entire Functions and Infinite Particle Systems?