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1. The Dyson model as a Determinantal Processes

e Dyson’s Brownian motion (BM) model {X;(t)}",

3 dt
{X,f:dB,t — 5 ].SS, 7 0, 5
dX;(t) ()+2. Z,_X?‘_(t)—X,;(t) i< n € [0, o0)
1<j<n,j#i -
>0 : a parameter indicating the strength of 1/x force,

{Bi(t)}, : independent 1 dim. standard BMs, B;(0) =0,1<1i <mn.

e To understand the time-evolution of distributions of interacting particle systems on a large
space-time scale (thermodynamic and hydrodynamic limits) is one of the main topics of
statistical physics.

— If the interactions among particles are short ranged, the standard theory is useful. e.g.

Fritz (1987)

— If they are long ranged, however, general theory has not yet been established and thus
detailed study of model systems is required. e.g. Spohn (1987)
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e In the present talk, we only consider the special case with § = 2.

e Let

M = the space of nonnegative integer-valued Radon measures on R,
which is a Polish space with the vague topology.
EeM = &)= Z(S;,_.‘.(-) :  unlabeled configuration

il
with a finite or infinite index set I,

a sequence of points in R, & = (z;);er,

satisfying &(I) =4{z; : x; € [} < oo for any compact subset I C R.

We regard the Dyson model as an 9t-valued diffusion process
2t) =) dx, tE€[0,00)
iel
where {X;(t)};c1 satisfy the SDEs
dX;(t) = dBi(t) + Y W
a8 =ebul X0 - %0

1<j<ng#i "

1<i<n, te][0,00),

e The process under the initial configuration
&= E 0z, €M
i€l

is denoted by
(E(), Pe).
We write the expectation with respect to Pe as E¢[-].

e Note that
£(R) = Z(t,R) = total number of particles, ¢ > 0.



o [ect

Co(R) = the set of all continuous real-valued functions with compact supports,
MeN={1,2,...},

a sequence of times ¢ = (t;,t2,...,ty) with 0<t; <--- <ty < o0,

a sequence of functions £ = (fi,, fros---» frry) € Co(R)M.

e The moment generating function of multitime distribution of (Z(¢), P¢)

M
‘Iif[f] = E¢ |exp {Z/Rf,m (:L’)E(t””dﬂ’;)}] :
m=1
lime
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e Let

Co(R) = the set of all continuous real-valued functions with compact supports,
MeN={1,2,...},

a sequence of times t = (¢;,ts,...,ty) with 0<t; <--- <ty < o0,

a sequence of functions f = (fi,, fio, -, fi;) € Co(R) M

e The moment generating function of multitime distribution of (=(¢), P¢)

vt f] = Eq [.:XP{Z/ Frn(2)E(t ,,,_,d:;:)}].

m=1

Remark 1. ‘

Set x;,.(+) = e/tm() —1, 1 <m < M. Expand KI‘t[f] w.r.t. x
Then

m S

r".f N

m m 1
q}t[‘f Z /u E\L,HX%( -?) p&(tlamfwl)b--;fm:

A
'r\l;n>U ”" 1V\; i TN= 1
1<m<M

with multi-time correlation functions

(M) (. . (M) 1
t..w ------ 3t1 -}w! )— (t.. ,....t_._ ) B —
Pg ( 1 \ V5 L, /M - pelt1,€ sty € H (N=N,)!

m=1" m=1

where :I:S\'”) = (™, .., (’”)) N,, < N and dz(" = H;L d:r:_ﬁm), 1<m< M, and

De (t-l JEW . ubp. B ) denotes the multltlme probability density.
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Theorem 1

The Dyson model starting from any fixed configuration £ € 9 with {(R) € N is determi-
nantal in the sense that

‘Pg[.ﬂ = Det ; [531‘5:1:('5') + K&(Sv €, i: y)Xt(y)jl
(3.!.)6(?.1 ,fg,....f._.u)z._
(x,y)ER?

with the continuous kernel (called the correlation kernel) Fredholm determinant

KE(Su z; t, y) = gs.t(may) - 1(8 > t)pf-.-s‘(yax)ﬁ

where

Il
dz po.s d -V -
- - zpo.s(z, :r:)/ w po+(w, Iy} ———

—(y—=z)2/{2(t—s)}
(heat kernel)

e
pst(T,y) =
' V2 (t — s) ) )
Weierstrass canonical product rep.
and _ .\ &en with genus 0

" z
Entire function ‘ o(x) =[] (1 == u)

x€supp EN{u}ec

Goa(,y) = @ (vV—1w),

\/_

with supp € = {z € R : {({z}) > 0}. Here I'(¢) is a closed contour on the complex plane C
encircling the points in supp £ on the real line R once in the positive direction.




Remark 2A. ‘

By definition of Fredholm determinant

W = Det | [ubely) + Ke(s, 7t 9)x)]
(S.!)E(f.]_!2._..71‘?_.\{)2.
(z,y)€R?

M A'r\"".-n
— d (-;rn.) ( :gm.)) 1t K oy ;(?,,). ‘ y _("n.) .
Z / M yA H { m:\.,,; H Xtin ) & i léiéj\fi_elgjgf\’,,. 5( ms ’IT silnys LJ )

Nm 20, m=1 "N, m=1 =1 1<mmn<M
1<m<M

M 1'\",“

. Z M

\Ijg [f] - Z /I"I-'” WA H {dmg\n:n) H Xtm ('I:'i('.m)) } 10‘5 (tlz m(\l']}1 JEE ;tﬂl.’u ml("\"‘.”}
=1 '}"‘_'\" 1=1

:\"m 2“ m m=1
1<m<M

Any multitime correlation function is given by a determinant

1) (M) (m) (n)
t 2\t ): det Kelt, a5t %
pg( DNy BMENY ) T ) i N 155 < N, ¢(tm, @5 s 57)
1<mn<M




Remark 2B.

If we consider the particle distribution at a single time ¢ > 0;

M=1,  t=@), f=(), x()=e) -1,
then

TL[f] = Det_ [5:r(y)+K2(:my)xt(y)]

with

Kg(az,y) dz po (2 x)/Rdwng( —v—1y) g(\/—_lw)

27r\/ (€) vV—=1lw -z

Any single-time distribution is a determinantal (Fermion) point process with the spatial
correlations

pig (ajf\.-’]) = det I:KE(T” T"}):| ) t € [0: OO): Nl < G(R)

1<i,j <Ny

See Soshnikov (2000), Shirai-Takahashi (2003), Hough-Krishnapur-Peres-Virdg (2009).




Remark 2C.

In particular, if the initial configuration is of N-multiple concentrated on the origin:

£ =N =&(R))y (i.e. all particles start from the origin),

then ) o "
1) w(m)n ()
2 S 2 2t
KN50 (S?m;tay) = 9 ’ A.:0:)0 k/2 \/_8 \/_
=) w(F)a(E) oo
I 25 o i v V2s e \/ﬂ j
where

r(€) = ﬁeczﬂfﬂ((j), ke Ny=1{0,1,2,...} (Hermite functions).
m2kk!

the extended Hermite kernel = Eynard-Mehta (1998)




Remark 2C. 10

In particular, if the initial configuration is of N-multiple concentrated on the origin:

&= Ny =&(R)dy (i.e. all particles start from the origin),

then ) |
1 Azl(t)kl/z (x) (y) if g1
& LJOA: — LI,’};‘, _ it g <
Kns (s, z;t,y) = 25 k=0_ & s V2s V2L
1Z(t>($) (y) ik Bad
B - < —— ‘ — 1 8 3
23 k=N # 7 \/% i \/’2—'{;
where
1 "
or(() = ——— a6 PHLC), keNy=1{0,1,2,...} (Hermite functions).
\/_2’%'

the extended Hermite kernel = Eynard-Mehta (1998)

.

Ke(s,z;t,y) + 1(s > t)pss(y, x)

1
= dz po.s d —y/—
271_\/_—1 () < Po, Z T / w pr w, y) \/_UJ —

B G ) (e
Vs \s EEANVERNE CA\VE VR |

multiple Hermite polynomials (see Ismail (2005), Bleher-Kuijlaars (2005)).




2. Construction of Infinite Particle Systems

Consider the special case treated in Remark 2C.

£ = Noy=&(R)dy (i.e. all particles start from the origin),

f N-1 k2
— - N —= ) or | —= if &=
2s = \5) “\Vas) "\ Va

1 0o " k/2
R =2 V2s) T\ V2t ’

then

KN@U (31 z;t, y) = 4




Consider the special case treated in Remark 2C.

(2.e. all particles start from the origin),

§=No = &(R)do

T=2N

A T V2N xT=2N

12

bhen ) :2[: (i)*w( v ) ( ;;.) o %5 5‘L ié

55 T <
Kns (s, z;t,y) = ‘/‘_1 ¥ L V2s 2t
i y
B s O\ Tz f 4 =i
\/Z_Z() “’(\/z—)*’( gf) o
§(R)=N — o0
: 2N
time = — +1
=
Kanls,mit,9) = g | dkem VB0~ 1(s> )y, 2)
T Jlkl<n

4

1
/ due™ 972 cog{ru(y — z)} ift>s
JO

Kz, 1) ift=s

s,t > 0,z,y € R with

htvea) _sin{ﬁ(y—:z:)}

z,y € R
m(y —x)

I\',-ein(-'rr y) =

L / dk e
T Jkl<x

The extended sine-kernel (Nagao-Forrester (1998)).

oo
- / due™ v 2 cos{mu(y — x)} ift <s,
\ J

<€ >
i B
Vd (s<0)
L/
<D
b
>
X

It is expected that the determinantal process having an infinite number of particels with the
extended sine-kernel describes the equilibrium dynamics of the infinite particle system constructed

by Osada (1996) by the Dirichlet form approach.




e Consider this infinite particle system from the view-point of SDEs: 13

dXi(t) = dBi(t)+ > X0 X0 1<i< N, tel0,o00).

1<j< Nj#i

e Since the 1/z force is not summable, in the infinite-particle limit N — oo the sum in the
above SDEs should be regarded as an improper sum, in the sense that for X;(t) € [-L, L]
the summation is restricted to j’s such that X;(¢) € [-L, L] and then the limit L — oo is
taken.

e It is expected that the dynamics with infinite number of particles can exist only for initial
configurations having the same asymptotic density to the right and left.

time

2L

2L°




In our formula,

lim N§, ¢ 9.

N—o0

Another route to infinite particle systems.

e For L > 0,a >0 and &£ € 9 we put

wen=-[ L Ma(s,L)z( /{} “dm))lm,

-LIN{o} T oy |T|*

and
M) = lim M(&,L), M,§) = lim M,(& L),

L—oo L—oo

if the limits finitely exist.

e We have introduced the following conditions for initial configurations & € 9:
(C.1) there exists Cy > 0 such that |M (&, L)| < Cy, L > 0,

(C.2) (i) there exist a € (1,2) and C > 0 such that M,(§) < Cy,
(ii) there exist # > 0 and C5 > 0 such that

M, (1_p26®) < Cy(max{lal,1}) ™ Va € supp &.

o Set M, = {feﬁﬁf({x}) <1 for anya:ER}.
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e It was shown that, if £ € 9, satisfies the conditions (C.1) and (C.2), then for a € R and
z € C,
®¢(2) = lim gy, o4py(2) finitely exists,

L—oo

and

2z 1§({0}) a

22(2)) < Cexp {elfal” + 121 } |

for some ¢,C > 0 and 0 € (max{a, (2 — ()},2), which are determined by the constants
Cy, C1,Cs and the indices a, ( in the conditions.

, a€suppé, z€C,

a—=z

Then even if £(R) = oo, under the conditions (C.1) and (C.2), K, is well-defined as a
correlation kernel and dynamics of the Dyson model with an infinite number of particles
(Z(t),P¢) exists as a determinantal process.

We note that in the case that £ € 9, satisfies the conditions (C.1) and (C.2) with constants
Co, C1,Cy and indices o and 3, then £ N [—L, L],VL > 0 does as well. Then we can obtain
the convergence of moment generating functions

UELlfl = CEf] as L— oo,
which implies the convergence of the probability measures
Penj—r) 7P as L — o0

in the sense of finite dimensional distributions.
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e Another way to the equilibrium dynamics of infinite particle system with the extended sine

kernel.

e Set the initial configuration as

&)=Y 50,

teZ

that is, the configuration in which every point of Z is occupied by one particle.

e This configuration &, satisfies our conditions and Dyson’s model starting from & is deter-
minantal with the kernel

Kfz(s: z;t, y) - Ksin(sa z;t, y)

]. ) LRI o v .
— dk ek (t=9)/2+ik(y—2) {193(3: — iks, 2mis) — 1}
27 Jik|<n

= Ksin(sa £ t: y)

1
i Z 6271-1'_;1:6—27.—23!’“ / du ew-u“(f:—ﬁ)/Q coS [?T'U{(y — ;[j) — 2W53€}],
(e7)\{0} .

+

s, t > 0,z,y € R, where 93 is a version of the Jacobi theta function defined by

Do P e 2
?93(,0’?_) = E :BZW:.r.{.+?rrr€ , Sr > 0.
(e’



e The lattice structure K¢, (s, x +n;t,y +n) = ng(s’x;t,y),‘v’n € Z,s,t > 0 is clear by the
periodicity, J3(v + n,7) = 93(v,7),Vn € Z.

e We can prove
lim Ke, (u+s,z;u+t,y) = Kan(s, z;t,y).

U—0OC

e The relaxation process starting from &z to the stationary state, which is the determinantal
point process with the sine kernel.

time
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3. Inhomogeneous Infinite Particle Systems

e Problem: How we can control Dyson’s model with infinite number of particles starting
from asymmetric initial configurations.

e The motivation is again coming from the random matrix theory as follows.
Consider the Airy function

i

1 3
mm=2![ﬂc (ERE3)

It is a solution of Airy’s equation f”(2) — zf(z) = 0 with the asymptotics on the real axis R

1 9 5 % i
T o [ %, 3/2 - gj2 _ T s _
Ail )z N exp ( 34 ) ,  Ai(—1 \/_? <73 €08 ( 2 4) in z— +o0.

e In the GUE random matrix theory, the following scaling limit has been extensively studied:

lim ,u\ \1,5(2\2"{5 + ) = pail),

N—oc

where 15; is the determinantal point process such that the correlation kernel is given by
(Tracy-Widom (1994)),

Kai(ylz) = / du Ai(u + x)Ai(u + y)
Jo

Ai(z)Ai'(y) — Ai’(:z.')Ai(y)_ & LR
- mﬂnffiﬂum. r=y€eR

It is called the soft-edge scaling limit, since a2 /2t ~ (2N?/?)2/(2N'/3) = 2N marks the right
edge of semicircle-shaped profile of the GUE eigenvalue distribution.

18



e The particle distribution p5; with the Airy kernel is highly asymmetric: As a matter of fact,
the particle density pai(z) = Kai(z|x) decays rapidly to zero as ¥ — oo, but it diverges

1 .
/)Ai("r) = _(_-’3-')1(!2 — 00 as T — —0oQ.

T
e Let R be the position of the rightmost particle on R in ps;. Then its distribution is given

by the celebrated Tracy-Widom distribution (Tracy-Widom (1994))

B w)= w5 [— ["w-orawral,

where ¢(x) is the unique solution of the Painlevé II equation ¢’ = xq + 2¢> satisfying the
boundary condition ¢(x) ~ Ai(x) in x — oc.

probability density function of

the Tracy-Widom distribution
0.5

rightmost path

04
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e As an explicit answer to the above questions, we have presented a relaxation process with
infinite number of particles converging to the stationary state pa; in t — oo. Its initial
configuration is given by

in which every zero of the Airy function is occupied by one particle.

This special choice of the initial configuration is due to the fact that the zeros of the Airy
function are located only on the negative part of the real axis R,

A = Ai™Y(0) = {a..,;._?'. e N : Ai(a;) =0,0> a1 > ay > }
with the values @i = —2.33...,00 = —4.08...,08 = —3.52..., 04 = —6.78 ..., and that

o 2/3 »
they admit the asymptotics a; >~ — (7) 2?2 in i— oo.

Then the average density of zeros of the Airy function around x, denoted by pa;-10)(2),
behaves as

Pai-1(0)(T) = (—:1:)”2 —~ 00 as T — —oo,

5|+

which coincides with

pai(z) ~ =(—x)/?* - 00 as z— —o0.
{

1
(s

20



zeros of sin(rx)

=Z/\[\

21

timeQ

R

relaxation to ‘sine process’

Aliry zeros
ar<0,/7eN

-

relaxation to ‘Airy process’ ???




confinement in the negative region R-
attimet=0

strong repulsive forces
——> due to noncolliding condition

A

drift terms
to make a stationary process

<

t dt
dY.(t) = dB;(t — dt
J( ) J( ) + (2 ) + ISRZS:‘N },;(IL) o }/1(1()




e The approximation of our process with a finite number of particles N < oo is given by

N
Z4(t) =) v
i=1

with
Yi(t) = Xi(t) + = + Dayt, 1<i< N, te[0,00),

associated with the solution X (t) = (X;(¢),..., Xn(t)) of Dyson’s model, where

N
1
Dyy =di + Z i
=1 ¢

Here d; = Ai'(0)/Ai(0) and Ay = {0 >ap > > (f_._,\r} C A is the sequence of the first N
zeros of the Airy function.

e In other words, Y (t) = (Yi(t). Ya(?).. .., Yy (t)) satisfies the following SDEs ;

. t dt
dY;(t) = dB;(t) + (E + DA_\,) dt + Z }f

¥
= dB;(t) + Z . +i i+ |-+di+—)dt
- — \Yi(t) - Y;(t) aq; ( g TR
1<G<N : »
iz

e Note that




Rai(s, x;t,y)

B dz ( )
— Z /H j)a,,bl|(£) - n)pm t, z|y)

acAi~ ! _
—1(9 > Hpai(s — t.x|y)
> Ai(u + ap)A

(w + ap)

/ du/du e~ u/2Hws/2 Aj(y + y)Ai(w + )

—1(s > t)pai(s — t. 2|y)

(Ai'( (u)

(=1

=00 Relaxation

S — 0

t— 5| < o Process

KAi(tv y’$) = 3

/ due "PAi(u+ z)Ai(u+y) ift>0
0

0
—/ due ™ ?Ai(u+ z)Ai(u+1y) ift <0,

— o0

extended Airy kernel

24



Let ¢..(x.y) = transition probability density of B(t) + t?/4

52 e
“r((-5) (-5))
-~ D -~ 2
and set g(s,2) = exp {~D . ( “;\ - SI — ;'L-') } .

Then po. ( (1 — D5 — i)) = qos(2', ) x G(s,x)e" PAx"

4
Then
"2 ILZ

Kf(gl—DA\Q—IfI}—DA\IL—Z)
_ i(s 1) dy! QU,S('T:!'. .’IT)C’-_DA*'\":I:’(D?('yf)GDA-’\:y’Qt.U('y, yr) o 1(5‘ > f)Qts(y J,)

g(t.y) 1 J=Ir V—1
Eg(s I)K?(s it y). ~\

g(t.y)

Welerstrass canonical product
with genus 1

sehy " .
Dax®@? (yf)ePany = == TJ Kl Y- ) _ (._u & )]
¢\ e i

Il
KH
my
—

g
o
S
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4. Noncolliding BESQ showing relaxation to determinantal

process with extended Bessel kernel

SDEs for finite particle approximation

U = (XI(V ), X @), . ., X}\ff')(t)) € WS Weyl chamber of type Cy, t € [0, 00)

A

Y(U / +X(U)1(
dX{(t) = 20/ XV dB;(t) + 2{ N + v + Z )20, ) (i

k@<xwg(ﬂ——xf%ﬂ
k#j

where Bj(t) are independent one-dimensional standard BMs

1<j<N, te[0,00),

/

*@ﬂ Jv(X)

time

R+



= erf{ ]J'/(\/E)
Ki(s,2;t,y) = d~P1 5, 2| o) —— —pJ,(—t, z|y)
‘;‘ZI: —00 { 22— _}uf ]V-f-l(jif.ﬁ)
—1(s > t)py, (s —t, z|y)
'S 00 ]V 9 » Wiy, ¢
- / dU/ duw (jm‘/2 2ws ].u “ U 2\/3{— Z ﬁ] f (\/_J -f)
=1 u—l—l(]r/[))
—1(s > t)ps, (s — &, z|y)
b Relaxation
S — OO

£ 8| < o0 Process

K, (t —sylr) =

;

1
f du e~ 270 I (2\/uz) J, (2/uy)

0

LV VITRYE) = VLV 2J)

H—1q)

- [ auerrety @vam) ey
! 1

extended Bessel kernel

it &<
if t=38
it s>t

27



5. Concluding Remarks 28
Theory of Entire Functions

order of growth p;

log log M¢(:
pr = limsup oglog My(r) for M(r) = max |f(2)]
r—o0o Iog r |z]=r
— |f(2)] ~ exp(rf’)
Weierstrass primary factors
| 1 —@ if p=0
G(uﬁp> = 4 2 P
u u :
(1 —u)exp [u+?+---+?] if pelN.
\

Weierstrass canonical product of genus p

11L&, 2) = H G(%,p), 2e€C

zegn{0}¢
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Hadamard theorem
Any entire function f of finite order p; < oo can be represented by
f(z) = 2™ (¢4, 2),

p = a nonnegative integer less than or equal to py,

P,(z) = a polynomial in z of degree ¢ < py,

m =the multiplicity of the root at the origin,

332

and &= ) 6
z€f~1(0)N{0}e
: 2 2
sinmz = w2lly(&z, 2) = w2 H (1 - ?) =% H (1 — ?)
x€€yN{0}© (eZ £#0
ﬁ) _ _(2/2)" ﬁ - 2
P l)o s o

I (:

(2/2)"

)

(

(2/2)" 2) 2
Ju(2) = =——=I({} ,2°) = =——
I'(v+1) P +1) e e
Ai(z) = _Ido-l-rhz ~) — pdotdiz [( - E) 'z/:r:‘| _ ‘dU—I—dlz o~
i(z) =e IT5{E.452) =€ H 1 " e e H 1 "
reA =1
General Theory for Entire Functions and Infinite Particle Systems ?
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